Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biochar supplementation could facilitate microbial colonization and increase biogas and methane yield in anaerobic digestion (AD). This study investigated the impact of corn stover biochar (CSB) augmentation on the continuous pilot scale AD of rice straw. The CSB supplementation exhibited the daily average specific biogas and methane yield of 368.6 L/kg volatile solids (VS) and 230 L/kg VS, which were 35% and 37% higher than the control. Principle component analysis indicated that the VS reduction positively correlated with the daily average specific biogas and methane yield. Metagenomic analysis revealed that the CSB supplementation facilitated microbial colonization with the enrichment of unclassified genera from families Planococcaceae, Clostridiaceae, and Ruminococcaceae, and genus Clostridium and methanogenic archaea (Methanosarcina and Methanobacterium). The co-occurrence network revealed a notable shift in microbial interactions following the supplementation of CSB as an additive in AD. These results offer insights for enhancing the performance of the AD using CSB.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131767DOI Listing

Publication Analysis

Top Keywords

biogas methane
12
methane yield
12
corn stover
8
stover biochar
8
biochar supplementation
8
continuous pilot
8
pilot scale
8
anaerobic digestion
8
microbial colonization
8
csb supplementation
8

Similar Publications

Factors affecting methane production and system recovery in mesophilic anaerobic digestion of food waste.

Environ Technol

September 2025

School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, People's Republic of China.

Food waste (FW) has high production potential that can be converted into renewable energy in the form of biogas during anaerobic digestion (AD). Batch tests under mesophilic (37°) disgestion were performed to evaluate the effects of different dosage ratios (10-35%), salts (0-20 g·L) and oil content (0-20 g·L) on methane (CH) production, process stability and organic reduction during the AD. The results showed that optimal CH occurred at a dosage ratio of 20%, while ratios > 30% caused inhibition.

View Article and Find Full Text PDF

Dynamic control of thermal hydrolysis to maximize net energy recovery from sewage sludge based on machine learning.

Bioresour Technol

September 2025

College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China. Electronic address:

Thermal hydrolysis pretreatment coupled with anaerobic digestion (THP-AD) substantially improves the energy recovery from sludge; however, its high thermal energy input often undermines overall system efficiency. This study developed a machine-learning-driven optimisation framework. The results indicated that, compared to the other three models, extreme gradient boosting achieved the highest predictive performance (R > 0.

View Article and Find Full Text PDF

The manual manometric (MM) method is widely used in batch anaerobic digestion tests, such as the biochemical methane potential (BMP) and the specific methanogenic activity (SMA), but it can cause inaccuracies due to biogas loss during measurements. This study presents an IoT-based biogas pressure measurement device developed with an Arduino microcontroller to improve accuracy and reliability in batch tests. The device supports four reactors and was tested in 250 mL glass vessels with varying headspace (20 and 50%) and substrate/inoculum ratios (0.

View Article and Find Full Text PDF

Peat moss (Sphagnum) plays a crucial role in extenuating the environmental toxicity by swaying the microbial activity and acting as a natural filter for removing pollutants. The peatlands help in the purification of water by filtering out the contaminants and decomposing organic matter by creating anaerobic conditions that create impacts on microbial communities. Additionally, Sphagnum pays for carbon sequestration that makes a positive impact in the carbon sinks process for peatlands.

View Article and Find Full Text PDF

Waste activated sludge (WAS) represents a significant operational and environmental challenge for wastewater treatment plants (WWTPs) due to its low biodegradability, attributed to extracellular polymeric substances (EPS) that hinder enzymatic hydrolysis. Electrochemical (EC) pretreatment has shown promise in improving organic matter solubilization. However, conventional systems often face limitations related to high energy demand, mineralization of organic matter and electrode degradation.

View Article and Find Full Text PDF