Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lung carcinoma, predominantly manifested as non-small cell lung cancer (NSCLC), significantly contributes to oncological mortality, underscoring an imperative for novel therapeutic paradigms. Amidst this context, the present investigation delineates the synergistic potentiation of doxorubicin (DOX)-a canonical chemotherapeutic-by Ursodeoxycholic acid (UDCA), a compound with a historical pedigree in hepatobiliary medicine, now repositioned within oncological pharmacotherapy due to its dichotomous cellular modulation-affording cytoprotection to non-malignant epithelia whilst eliciting apoptotic cascades in neoplastic counterparts. This study, through a rigorous methodological framework, elucidates UDCA's capacity to inhibit NSCLC cellular proliferation and induce apoptosis, thereby significantly amplifying DOX's chemotherapeutic efficacy. Notably, the co-administration of UDCA and DOX was observed to attenuate DOX-induced autophagy via the modulation of the TGF-β/MAPK signaling axis, a pathway pivotal in mediating cellular survival and autophagic mechanisms. Such findings not only underscore the therapeutic potential of UDCA as a chemosensitizer but also illuminate the molecular underpinnings of its modulatory effects, thereby contributing to the corpus of knowledge necessary to surmount chemoresistance in NSCLC. The implications of this research are twofold: firstly, it offers a compelling evidence base for the clinical reevaluation of UDCA in combinatory chemotherapeutic regimens; secondly, it posits a novel mechanistic insight into the modulation of chemotherapeutic efficacy and resistance. Collectively, these insights advocate for the expedited clinical translation of UDCA-DOX synergy, potentially heralding a paradigm shift in the management of NSCLC, thereby addressing a critical lacuna in contemporary oncological therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544154PMC
http://dx.doi.org/10.1038/s41598-024-73736-7DOI Listing

Publication Analysis

Top Keywords

modulation tgf-β/mapk
8
chemotherapeutic efficacy
8
nsclc
5
enhancing dox
4
dox efficacy
4
efficacy nsclc
4
nsclc udca-mediated
4
udca-mediated modulation
4
tgf-β/mapk autophagy
4
autophagy pathways
4

Similar Publications

The Jasmonate-Responsive SmMPK3-SmWRKY33 Module Positively Regulates Tanshinone Biosynthesis in Salvia miltiorrhiza.

Plant Biotechnol J

September 2025

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.

Tanshinones, the major bioactive diterpenes in Salvia miltiorrhiza Bunge, are widely used to treat cardiovascular and cerebrovascular diseases. While jasmonates (JAs) are known to modulate tanshinones accumulation, the molecular link between JA signalling and tanshinone biosynthesis remains unclear. Here, we identify SmWRKY33, a JA-responsive WRKY transcription factor, as a key regulator of tanshinone biosynthesis through multiomic and genetic analyses.

View Article and Find Full Text PDF

Investigating the mechanism of gastrodin-regulated miR-128-3p in methamphetamine dependence via integrated pharmacology.

Medicine (Baltimore)

September 2025

Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.

Gastrodin (GAS), the principal bioactive component derived from Gastrodia elata Bl., has demonstrated efficacy in attenuating methamphetamine (MA) induced conditioned place preference (CPP) in animal models. However, the molecular mechanisms underlying its anti-addictive effects, particularly the role of miRNAs, remain insufficiently understood.

View Article and Find Full Text PDF

Background: Selenium and zinc elements have been proven to participate in immune regulation and infertility improvement. Their potential has been confirmed in in prostatitis and reproductive performance modulation. In this study, first the composition of selenium- and zinc-enriched duck embryo egg (SZDE) powder was analyzed, especially trace elements and oligopeptides.

View Article and Find Full Text PDF

Genome-wide identification analysis of aldo-keto reductase gene family in cotton and GhAKR40 role in salt stress tolerance.

Funct Integr Genomics

September 2025

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.

In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.

View Article and Find Full Text PDF

Background: Sodium homeostasis is crucial for physiological balance, yet the neurobiological mechanisms underlying sodium appetite remain incompletely understood. The nucleus tractus solitarii (NTS) integrates visceral signals to regulate feeding behaviors, including sodium intake. This study investigated the role of 11β-hydroxysteroid dehydrogenase type 2 (HSD2)-expressing neurons in the NTS in mediating sodium appetite under low-sodium diet (LSD) conditions and elucidated the molecular pathways involved, particularly the cyclic adenosine monophosphate (cAMP)/mitogen-activated protein kinase (MAPK) signaling cascade.

View Article and Find Full Text PDF