Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Staphylococcus aureus can cause outbreaks and becomes multi-drug resistant through gene mutations and acquiring resistance genes. However, why S. aureus easily adapts to hospital environments, promoting resistance and recurrent infections, remains unknown. Here we show that a specific S. aureus lineage evolved from a clone that expresses the accessory gene regulator (Agr) system to subclones that reversibly suppressed Agr and caused an outbreak in the hospital setting. S. aureus with flexible Agr regulation shows increased ability to acquire antibiotic-resistant plasmids, escape host immunity, and colonize mice. Bacteria with flexible Agr regulation shows altered cytosine genomic methylation, including the decreased 5mC methylation in transcriptional regulator genes (pcrA and rpsD), compared to strains with normal Agr expression patterns. In this work, we discover how altered genomic methylation promotes flexible Agr regulation which is associated with persistent pathogen colonization in the hospital environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544029PMC
http://dx.doi.org/10.1038/s41467-024-54033-3DOI Listing

Publication Analysis

Top Keywords

genomic methylation
12
flexible agr
12
agr regulation
12
altered genomic
8
methylation promotes
8
staphylococcus aureus
8
hospital environment
8
agr
6
aureus
5
methylation
4

Similar Publications

Aberrant DNA methylation has been described in nearly all human cancers, yet its interplay with genomic alterations during tumor evolution is poorly understood. To explore this, we performed reduced representation bisulfite sequencing on 217 tumor and matched normal regions from 59 patients with non-small cell lung cancer from the TRACERx study to deconvolve tumor methylation. We developed two metrics for integrative evolutionary analysis with DNA and RNA sequencing data.

View Article and Find Full Text PDF

Cancer development and response to treatment are evolutionary processes, but characterizing evolutionary dynamics at a clinically meaningful scale has remained challenging. Here we develop a new methodology called EVOFLUx, based on natural DNA methylation barcodes fluctuating over time, that quantitatively infers evolutionary dynamics using only a bulk tumour methylation profile as input. We apply EVOFLUx to 1,976 well-characterized lymphoid cancer samples spanning a broad spectrum of diseases and show that initial tumour growth rate, malignancy age and epimutation rates vary by orders of magnitude across disease types.

View Article and Find Full Text PDF

Mass-based fingerprinting can characterize microorganisms; however, expansion of these methods to predict specific gene functions is lacking. Therefore, mass fingerprinting was developed to functionally profile a yeast knockout library. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) fingerprints of 3,238 knockouts were digitized for correlation with gene ontology (GO).

View Article and Find Full Text PDF

Forensic applications of compound genetic markers: trends and future directions.

Sci Justice

September 2025

School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville, Durban 4000, South Africa. Electronic address:

A compound marker integrates two or more genetic markers into a single assay. The application of compound markers enhances the predictive accuracy of genetic testing by leveraging the strengths of different genetic variations while mitigating the limitations of individual markers. Compound markers include SNP-SNPs, SNP-STRs, DIP-SNPs, DIP-STRs, Multi-In/Dels, CpG-SNPs, CpG-STRs/CpG-In/Del, and Methylation-Microhaplotypes.

View Article and Find Full Text PDF

Background: The proteome is a valuable resource for pinpointing therapeutic targets. Therefore, we conducted a proteome-wide Mendelian randomization (MR) study aimed at identifying potential protein markers and therapeutic targets for Anti-N-Methyl-D-Aspartate Receptor Encephalitis (NMDAR-E).

Methods: Protein quantitative trait loci (pQTLs) were obtained from seven published genome-wide association studies (GWASs) focusing on the plasma proteome, resulting in summary-level data for 734 circulating protein markers.

View Article and Find Full Text PDF