Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The protein corona formed on nanoparticles (NPs) has potential as a valuable diagnostic tool for improving plasma proteome coverage. Here, we show that spiking small molecules, including metabolites, lipids, vitamins, and nutrients into plasma can induce diverse protein corona patterns on otherwise identical NPs, significantly enhancing the depth of plasma proteome profiling. The protein coronas on polystyrene NPs when exposed to plasma treated with an array of small molecules allows for the detection of 1793 proteins marking an 8.25-fold increase in the number of quantified proteins compared to plasma alone (218 proteins) and a 2.63-fold increase relative to the untreated protein corona (681 proteins). Furthermore, we discovered that adding 1000 µg/ml phosphatidylcholine could singularly enable the detection of 897 proteins. At this specific concentration, phosphatidylcholine selectively depletes the four most abundant plasma proteins, including albumin, thus reducing the dynamic range of plasma proteome and enabling the detection of proteins with lower abundance. Employing an optimized data-independent acquisition approach, the inclusion of phosphatidylcholine leads to the detection of 1436 proteins in a single plasma sample. Our molecular dynamics results reveal that phosphatidylcholine interacts with albumin via hydrophobic interactions, H-bonds, and water bridges. The addition of phosphatidylcholine also enables the detection of 337 additional proteoforms compared to untreated protein corona using a top-down proteomics approach. Given the critical role of plasma proteomics in biomarker discovery and disease monitoring, we anticipate the widespread adoption of this methodology for the identification and clinical translation of biomarkers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544298PMC
http://dx.doi.org/10.1038/s41467-024-53966-zDOI Listing

Publication Analysis

Top Keywords

protein corona
20
plasma proteome
16
plasma
10
proteome profiling
8
profiling protein
8
small molecules
8
proteins
8
untreated protein
8
protein
6
corona
5

Similar Publications

Nanoparticles Induce Protein Corona Conformational Change to Reshape Intracellular Interactome for Microglial Polarization.

ACS Nano

September 2025

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Nanoparticles bind to proteins in cells selectively and form a protein corona around them. However, the mechanisms of protein conformational changes underlying the interactions between nanoparticles and protein coronas remain poorly understood. In this study, we prepared small molecule self-assembled nanoparticles (Aloin NPs) as a research tool to investigate the allosteric mechanism of protein coronas.

View Article and Find Full Text PDF

Microplastics and nanoplastics (MNPs) are common pollutants that engage with proteins, lipids, nucleic acids, and other biomolecules, damaging cell structure. This review goes beyond simply listing where MNPs are found to explore how they cause harm, detailing mechanisms such as oxidative stress, endocrine disruption, genotoxicity, protein misfolding, lipid membrane destabilization, and epigenetic changes. Propose an integrated mechanistic hypothesis connecting these processes via oxidative epigenetic feedback loops, size-dependent organelle targeting, and pollutant corona effects, with potential implications for cellular aging and transgenerational outcomes.

View Article and Find Full Text PDF

Herein we report the in silico discovery of 13 novel micromolar potent inhibitors of the SARS-CoV-2 NSP13 helicase validated in cellular antiviral and biophysical ThermoFluor assays. The compounds, discovered using a novel fragment-based pharmacophore virtual screening workflow named FragmentScout, enable the advancement of novel antiviral agents. FragmentScout uses publicly accessible structural data of the SARS-CoV-2 NSP13 helicase, which was previously generated at the Diamond LightSource by XChem high-throughput crystallographic fragment screening.

View Article and Find Full Text PDF

Background: Although robust genetic markers for episodic migraine (EM) have been identified, variants associated with chronic migraine (CM) are still unknown. Given the potential pathophysiologic overlap between EM and CM, we investigated whether six single nucleotide polymorphisms (SNPs), robustly associated with EM susceptibility (LRP1 rs11172113, PRDM16 rs10797381, FHL5 rs7775721, TRPM8 rs10166942, near TSPAN2 rs2078371 and MEF2D rs1925950) also play a role in the risk of developing CM.

Methods: A total of 200 EM and 202 CM participants were prospectively included.

View Article and Find Full Text PDF

Physiological pH Transition-Driven Protein Corona Dynamics Regulate Cellular Uptake and Inflammatory Responses of Silica Nanoparticles.

Adv Sci (Weinh)

September 2025

Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China.

Protein corona alters the biological identities and interactions of nanoparticles with cells, needing to be thoroughly scrutinized before in vivo applications. Importantly, protein corona is evolving as nanoparticles cross different microenvironments, leading to unpredictable biological behaviors. Unveiling how physiological conditions change, especially pH changes associated with tumor-targeted delivery, affect protein corona composition and subsequent bio-interactions, is thus essential for understanding the bio-fate and therapeutic efficacy of nanomedicines.

View Article and Find Full Text PDF