Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An understanding of how irrigation regimes affect autotrophic microorganisms is essential, as this has direct implications for the soil organic carbon (SOC) content, rice yield and the sustainable agricultural practices. Here, the effects of three irrigation regimes on autotrophic microorganisms, soil active organic carbon fractions, and rice yield were explored. The irrigation regimes were: 1) rainfed (RF), 2) midseason drying (MD), and 3) continuous flooding (CF). The SOC, microbial biomass carbon (MBC), MBC/SOC ratio, dissolved organic carbon (DOC), DOC/SOC ratio, the cbbL (the cbbL gene encodes the large subunit of ribulose-1, 5-bisphosphate carboxylase) bacterial alpha diversity and community composition, and rice yield were assessed under each regime. The highest MBC content (646 mg kg in the early season and 1007 mg kg in the late season) and MBC/SOC ratio (3% in the early season and 5% in the late season) were observed under the RF regime. The soil DOC content and DOC/SOC ratio were the highest in the MD regime, followed by the CF regime. The lowest values were observed under the RF regime, with greater differences observed in the late season. Soil cbbL bacterial alpha diversity was the highest in the MD regime and the lowest in the CF regime. The irrigation regimes altered the composition of the cbbL microbial community, with Burkholderiales and Corynebacteriales exhibiting the highest relative abundances in the MD regime. In the late season, the rice yield in the MD regime was 53% and 14% greater than the RF and CF regimes, respectively. A partial-least-squares path model showed that the optimal regime (MD regime) increased the alpha diversity of the soil cbbL bacteria and the relative abundances of several probiotic microorganisms. This, in turn, increased soil DOC content and its contribution to SOC, eventually increasing the rice yield. These findings clarified the effects of different water management strategies on autotrophic microorganisms, organic carbon, and rice yield, providing guidance for implementing suitable water management practices to enhance soil fertility and rice yield.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.123131DOI Listing

Publication Analysis

Top Keywords

rice yield
32
organic carbon
20
irrigation regimes
16
late season
16
soil cbbl
12
autotrophic microorganisms
12
alpha diversity
12
regime
11
soil
9
midseason drying
8

Similar Publications

Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.

View Article and Find Full Text PDF

The interactions between ethylcellulose (EC) and waxes in multicomponent oleogel systems are underexplored. This study investigated the structural, functional, and physiochemical properties of rice bran oil (RBO) oleogels structured with various ratios of EC and a binary wax blend (9:1 beeswax (BW): carnauba wax (CRW)), varied in 0.5 % w/w increments at a constant total gelator concentration of 4 % w/w.

View Article and Find Full Text PDF

Background: Neighborhoods resulting from rapid urbanization processes are often saturated with eateries for local communities, potentially increasing exposure to unhealthy foods and creating diabetogenic residential habitats.

Objective: We examined the association between proximity of commercial food outlets to local neighborhood residences and type 2 diabetes (T2D) cases to explore how local T2D rates vary by location and provide policy-driven metrics to monitor food outlet density as a potential control for high local T2D rates.

Methods: This cross-sectional ecological study included 11,354 patients with active T2D aged ≥20 years geocoded using approximate neighborhood residence aggregated to area-level rates and counts by subdistricts (mukims) in Penang, northern Malaysia.

View Article and Find Full Text PDF

Evaluation of the impact of sugarcane trash in situ incorporation on soil health in North Haryana.

Environ Monit Assess

September 2025

Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India.

India produces an estimated 6.38 million tons of surplus sugarcane trash annually. When burned in fields, this trash emits approximately 12,948 kg CO equivalent greenhouse gases per hectare and causes nutrient losses (41 kg ha nitrogen, 5.

View Article and Find Full Text PDF

pv. is a pathogen of rice responsible for bacterial leaf streak, a disease that can cause up to 32% yield loss. While it was first reported a century ago in Asia, its first report in Africa was in the 1980s.

View Article and Find Full Text PDF