Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Membrane proteins (MPs) play important roles in various cellular processes and are major targets for drugs. Solubilization of MPs is often needed for structural and biophysical studies. For high-resolution nuclear magnetic resonance measurements, there is a size limit of the sample (<100 kDa), and a high thermal stability at an increased temperature is required. Furthermore, lipid bilayer-like environments are desirable to preserve the native states of MPs. However, existing solubilization techniques do not fulfill these requirements at the same time. In this study, we combined two phospholipid analogues as a solubilizer and stabilizer to isolate MPs. This method maintained bacteriorhodopsin (bR) extracted from purple membranes in its native state for 7 d at 40 °C. The solubility was comparable to that of conventional detergents for MPs, and the thermal stability of the solubilizate was the best among them. The increase in the molecular size caused by the solubilization of bR was only 20 kDa, indicating that 20 phospholipid analogue molecules were sufficient to solubilize one bR molecule. N-H heteronuclear single quantum coherence spectra of solubilized H- and N-labeled bR gave ∼80% of the expected peaks. In addition, the lysate of human neuropeptide Y receptor-expressing mammalian cells exhibited ligand recognition for 7 d at 37 °C, suggesting that this technique can be used for ligand screening. Moreover, the structure of the single membrane-spanning M2 protein of the influenza A virus expressed in was stably maintained for 7 d at 40 °C. Thus, our method is promising for various MP studies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c15697DOI Listing

Publication Analysis

Top Keywords

membrane proteins
8
stable minimum
4
minimum size
4
size solubilization
4
solubilization membrane
4
proteins cocktails
4
cocktails phospholipid
4
phospholipid analogues
4
analogues membrane
4
proteins mps
4

Similar Publications

Membrane proteins are essential bio-macromolecules involved in numerous critical biological processes and serve as therapeutic targets for a wide range of modern pharmaceuticals. Small amphipathic molecules, called detergents or surfactants, are widely used for the isolation and structural characterization of these proteins. A key requirement for such studies is their ability to maintain membrane protein stability in aqueous solution, a task where conventional detergents often fall short.

View Article and Find Full Text PDF

Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.

View Article and Find Full Text PDF

Aims: The increasing antimicrobial resistance, particularly in Acinetobacter baumannii, complicates the treatment of infections, leading to higher morbidity, mortality, and economic costs. Herein, we aimed to determine the in vitro antimicrobial, synergistic, and antibiofilm activities of colistin (COL), meropenem, and ciprofloxacin antibiotics, and curcumin, punicalagin, geraniol (GER), and linalool (LIN) plant-active ingredients alone and in combination against 31 multidrug-resistant (MDR) A. baumannii clinical isolates.

View Article and Find Full Text PDF

Background/aims: Ubiquitin D (UBD), a member of the ubiquitin-like modifier (UBL) family, is significantly overexpressed in various cancers and is positively correlated with tumor progression. However, the role and underlying mechanisms of UBD in rheumatoid arthritis (RA) remain poorly understood. This study aimed to investigate the effects of UBD knockdown on the progression of RA.

View Article and Find Full Text PDF

Purpose: To evaluate the efficacy and underlying mechanism of advanced optimal pulse technology intense pulsed light (AOPT) in low-energy triple-pulse long-width mode (AOPT-LTL) for melasma treatment.

Methods: An in vivo guinea pig model of melasma was established through progesterone injection and ultraviolet B radiation. Three sessions of AOPT-LTL treatment were performed weekly.

View Article and Find Full Text PDF