98%
921
2 minutes
20
Developing effective, cost-efficient, and eco-friendly energy storage solutions is crucial for sustainable building structures. Red mud, a waste material, was used as the electrolyte and separator in supercapacitors, alongside activated carbon derived from jute sticks coated on steel mesh electrodes. Tests on RM-enhanced supercapacitors showed that 20 % by weight of RM was the best amount. This increased the modulus of elasticity by 33 %, the tensile strength by 3 %, and the compressive strength by 10 %. Durability was largely unaffected, with minimal additional water absorption and slight shrinkage variation. The supercapacitor cell had an extended cell potential of 1.5 V and a maximum specific capacitance of 62.3 F g-1 at 0.4 A g-1, as shown by electrochemical tests. This improved energy density to 19.5 Wh kg-1, with a power density of 301.8 W kg-1 at 0.4 A g-1 and a maximum power density of 605.8 W kg-1 at 0.8 A g-1. The cell retained 77 % of its initial capacitance after 450 continuous GCD cycles, demonstrating notable stability. This stability is due to the solid electrolyte and the synergy between JC and RM, indicating promising advancements for future energy storage devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202401222 | DOI Listing |
Environ Res
September 2025
National Key Laboratory of Deep Coal Mining Safety and Environmental Protection, Anhui University of Science and Technology, Huainan, 232001, Anhui, China.
Zeolite synthesis from fly ash offers recycling and environmental benefits for carbon dioxide capture, but varying fly ash composition from different sources has different compositions, leading to inconsistent adsorption results. To achieve high CO adsorption performance and stability in zeolite synthesis from fly ash systems, this study established an element-controlled simulated fly ash system with Ca/Fe gradient differences. Hydrothermal synthesis yielded zeolites with optimized oxide ratios for CO adsorption.
View Article and Find Full Text PDFEnviron Res
September 2025
China Construction Fourth Engineering Bureau Fifth Construction Engineering Co., Ltd. Nanxin Road, Nanshan District, Shenzhen, 518000, China. Electronic address:
The production of phosphogypsum (PG), calcium carbide slag (CS), and red mud (RM) in global industrial development imposes serious environmental issues. Utilizing CS and PG as curing agents and incorporating RM as a soil substitute can facilitate the solid waste resource utilization. However, few studies have investigated the synergistic effects of PG and CS on the stabilization of RM and soil.
View Article and Find Full Text PDFBiology (Basel)
August 2025
College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China.
Preparing red mud/phosphogypsum-based artificial soils for vegetation restoration is promising. However, how artificial soil develops during vegetation restoration is unclear, especially regarding the relationship between the bacterial community and the development of artificial soil. The bacterial community changes in the early-stage engineering simulation of red mud/phosphogypsum-based artificial soil vegetation restoration were analyzed for the first time in this paper.
View Article and Find Full Text PDFSci Rep
September 2025
Department of Chemistry, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran.
This study revealed the synthesis of a novel metal-organic framework (MOF) through the reaction between red mud as an industrial waste material, and trimesic acid (TCA) for the adsorption of methyl orange (MO) through Response Surface Methodology (RSM) from aqueous solutions. The synthesis process utilized red mud as a sustainable source of metal ions and TCA as the organic linker to obtain Red Mud-Trimesic Acid MOF (RM/TCA-MOF) under hydrothermal conditions. The synthesized MOF was characterized using various techniques such as Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Energy dispersive X-ray (EDX), Brunauer-Emmett-Teller (BET) surface area analysis, Transmission electron microscopy (TEM), and Thermogravimetric Analysis (TGA).
View Article and Find Full Text PDFMaterials (Basel)
August 2025
College of Urban and Rural Construction, Shanxi Agricultural University, Jinzhong 030800, China.
To address the environmental risks associated with large-scale stockpiling of red mud (RM) and coal gangue (CG) and the demand for their high-value utilization, this study proposes a ternary concrete system incorporating RM, fly ash (FA), and CG aggregate. The effects of RM content, FA content, CG aggregate replacement rate, and water-to-binder ratio on workability, mechanical properties, and frost resistance durability were systematically investigated through orthogonal experiments, with the underlying micro-mechanisms revealed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results indicate that workability is predominantly governed by the water-to-binder ratio, while the micro-aggregate effect of FA significantly enhances fluidity.
View Article and Find Full Text PDF