Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Synthesis and characterization of a thermally stable triarylphosphine radical cation, [P(8-Br-CH)][BArF] ([][BArF], BArF = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate), enabled by stabilization through -bromo-substituted naphthalenes, are described. Unlike previously reported phosphine radical cations that rely on sterically bulky substituents for stabilization, our approach leverages electronic stabilization via "through-space" radical delocalization. Single-crystal X-ray diffraction of [][BArF] reveals a tricapped tetrahedral geometry, resulting from the spatial proximity of the three bromine atoms to the phosphorus center, differentiated from the trigonal planar geometry observed in the previously reported triarylphosphine radical cations with sterically bulky substituents. EPR spectroscopy shows an isotropic signal with hyperfine couplings to both the phosphorus and the three bromine atoms, indicating spin delocalization over these four atoms and consequent formation of a four-center, seven-electron (4c-7e) bond. DFT computational studies further support the through-space radical delocalization mechanism, revealing that the HOMO of exhibits antibonding character between the phosphorus center and the three adjacent Br atoms, distinct from common triarylphosphines.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c13968DOI Listing

Publication Analysis

Top Keywords

triarylphosphine radical
12
radical delocalization
12
radical cation
8
through-space radical
8
radical cations
8
sterically bulky
8
bulky substituents
8
three bromine
8
bromine atoms
8
phosphorus center
8

Similar Publications

Deoxygenative [3 + 2] Annulation of α,β-Unsaturated Carbonyl Compounds and Electron-Rich Olefins via Photocatalytic Umpolung of Triarylphosphine.

J Am Chem Soc

July 2025

Institute of Transformative Bio-Molecules (WPI-ITbM), and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan.

A visible-light-driven deoxygenative [3 + 2] annulation between α,β-unsaturated carbonyl compounds and electron-rich olefins was developed, which proceeded under mild conditions with a broad substrate scope and functional group tolerance, enabling straightforward access to diverse substituted cyclopentenes. This cascade annulation strategy exploited the reactivity of phosphine radical cations, generated from triarylphosphines by the oxidation with the excited-state iridium-based photocatalysts, toward olefins to form the corresponding distonic radical cations with a chain length pertinent to constructing cyclopentene scaffolds via sequential radical addition and intramolecular Wittig reaction.

View Article and Find Full Text PDF

Synthesis and characterization of a thermally stable triarylphosphine radical cation, [P(8-Br-CH)][BArF] ([][BArF], BArF = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate), enabled by stabilization through -bromo-substituted naphthalenes, are described. Unlike previously reported phosphine radical cations that rely on sterically bulky substituents for stabilization, our approach leverages electronic stabilization via "through-space" radical delocalization. Single-crystal X-ray diffraction of [][BArF] reveals a tricapped tetrahedral geometry, resulting from the spatial proximity of the three bromine atoms to the phosphorus center, differentiated from the trigonal planar geometry observed in the previously reported triarylphosphine radical cations with sterically bulky substituents.

View Article and Find Full Text PDF

Surface-Assisted Selective Air Oxidation of Phosphines Adsorbed on Activated Carbon.

Inorg Chem

May 2024

Department of Chemistry, Texas A&M University, College Station, Texas 77845-3012, United States.

Trialkyl- and triarylphosphines readily adsorb onto the surface of porous activated carbon (AC) even in the absence of solvents through van der Waals interactions between the lone electron pair and the AC surface. This process has been proven by solid-state NMR techniques. Subsequently, it is demonstrated that the AC enables the fast and selective oxidation of adsorbed phosphines to phosphine oxides at ambient temperature in air.

View Article and Find Full Text PDF

We detail the relative role of ancillary ligand electron-donating ability in comparison to the locus of oxidation (either metal or ligand) on the electrophilic reactivity of a series of oxidized Mn salen nitride complexes. The electron-donating ability of the ancillary salen ligand was tuned the -phenolate substituent (R = CF, H, Bu, OPr, NMe, NEt) in order to have minimal effect on the geometry at the metal center. Through a suite of experimental (electrochemistry, electron paramagnetic resonance spectroscopy, UV-vis-NIR spectroscopy) and theoretical (density functional theory) techniques, we have demonstrated that metal-based oxidation to [Mn(Sal)N] occurs for R = CF, H, Bu, OPr, while ligand radical formation to [Mn(Sal)N]˙ occurs with the more electron-donating substituents R = NMe, NEt.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are developing new methods to create stable organic radicals without using additives.
  • They designed triarylphosphines with a donor-acceptor structure that change color quickly when exposed to UV light.
  • The color change is due to the formation of photoinduced organic radicals, confirmed through various analyses, and is facilitated by the unique molecular arrangement that promotes electron transfer among the chains.
View Article and Find Full Text PDF