Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Manganese octahedral molecular sieves with an α-MnO crystal structure (OMS-2) and their related materials have attracted significant attention for the selective catalytic reduction of NO using NH (NH-SCR) at low temperatures. Further lowering their operating temperature should be an effective method to develop an environmentally friendly de-NO system; however, their catalytic activity at low temperatures, especially below 100 °C, remains poor. This study describes a post-synthetic approach to develop Mn-based catalysts superior to those in the literature that operate at ultralow temperatures. Post-synthetic planetary ball milling for OMS-2 caused the partial conversion of OMS-2 into β-MnOOH. The obtained nanocomposite catalysts possessed abundant surface oxygen vacancies and strong surface acidity, allowing the milled catalyst to exhibit higher NO conversion at 90 °C (91%) than that in freshly prepared OMS-2 without planetary ball milling (29%). Lowering the operation temperature of OMS-2 catalysts contributed to the suppression of NO evolution during NH-SCR over manganese-based catalysts, resulting in high N selectivity over the milled OMS-2 catalyst (93%).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539617PMC
http://dx.doi.org/10.1039/d4ra05934dDOI Listing

Publication Analysis

Top Keywords

selective catalytic
8
catalytic reduction
8
low temperatures
8
planetary ball
8
ball milling
8
oms-2
6
superior low
4
low temperature
4
temperature activity
4
activity α-mno/β-mnooh
4

Similar Publications

Cyclin-dependent kinase 20 (CDK20), also known as cell cycle-related kinase (CCRK), plays a pivotal role in hepatocellular carcinoma (HCC) progression by regulating β-catenin signaling and promoting uncontrolled proliferation. Despite its emerging significance, selective small-molecule inhibitors of CDK20 remain unexplored. In this study, a known CDK20 inhibitor, ISM042-2-048, was employed as a reference to retrieve structurally similar compounds from the PubChem database using an 85% similarity threshold.

View Article and Find Full Text PDF

This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.

View Article and Find Full Text PDF

The photocatalytic reduction of carbon dioxide (CO) to chemicals holds significant importance for mitigating the current energy crisis. Rational design of catalytic centers within well-defined structures can effectively enhance the reaction activity and selectivity. In this study, we constructed interrupted zeolitic boron imidazolate frameworks (BIFs) featuring unsaturated coordination at the central Co ion.

View Article and Find Full Text PDF

Ultrastable Copper Cluster Enables Highly Site-Selective and Chemoselective Carbocation C(sp)-H and C(sp)-H Bonds Functionalization.

J Am Chem Soc

September 2025

State Key Laboratory of Antiviral Drugs, Tianjian Laboratory of Advanced Biomedical Sciences, Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.

The C-H functionalization represents a universal and important method for constructing new C-C bonds by carrying out reactions directly on inert C-H bonds. The major challenges are to control the site-selectivity and chemoselectivity because most complex organic compounds have many similar C-H bonds or different functional groups, such as a C═C bond or O-H bond. Here, we develop a versatile copper cluster (CuNC) with high stability and dynamic catalytic sites.

View Article and Find Full Text PDF

Solvothermal synthesis of PtPb nanoparticles with efficient alcohol oxidation performance.

Nanoscale

September 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Precious metal nanomaterials have demonstrated significant advantages in the field of alcohol electro-catalytic oxidation. In this study, the inexpensive main group metals lead (Pb) and platinum (Pt) have been innovatively selected to construct an alloy catalyst. By employing the solvent-thermal method, PtPb nanoparticles with a well-defined crystalline structure were successfully synthesized, exhibiting excellent performance.

View Article and Find Full Text PDF