Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biological nanopores are increasingly used in molecular sensing due to their single-molecule sensitivity. The detection of per- and polyfluoroalkyl substances (PFAS) like perfluorooctanoic acid and perfluorooctane sulfonic acid is critical due to their environmental prevalence and toxicity. Here, we investigate selective interactions between PFAS and four cyclodextrin (CD) variants (α-, β-, γ-, and 2-hydroxypropyl-γ-CD) within an α-hemolysin nanopore. We demonstrate that PFAS molecules can be electrochemically sensed by interacting with a γ-CD in a nanopore. Using HP-γ-CDs with increased steric resistance, we can identify homologs of the perfluoroalkyl carboxylic acid and the perfluoroalkyl sulfonic acid families and detect common PFAS in drinking water at 0.4 to 2 parts per million levels, which are further lowered to 400 parts per trillion by sample preconcentration. Molecular dynamics simulations reveal the underlying chemical mechanism of PFAS-CD interactions. These insights pave the way toward nanopore-based in situ detection with promises in environmental protection against PFAS pollution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540018PMC
http://dx.doi.org/10.1126/sciadv.adp8134DOI Listing

Publication Analysis

Top Keywords

per- polyfluoroalkyl
8
polyfluoroalkyl substances
8
sulfonic acid
8
pfas
5
single-molecule profiling
4
profiling per-
4
substances cyclodextrin
4
cyclodextrin mediated
4
mediated host-guest
4
host-guest interactions
4

Similar Publications

Perfluoroalkyl substances exposure and kidney function decline in a community-based prospective cohort.

Ecotoxicol Environ Saf

September 2025

Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, 222, Mai-Chin Road, Keelung 20401, Taiwan; College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, Taipei 33302, Taiwan; Community Medicine Research Center, Chang Gung Memorial Hospital,

Per- and polyfluoroalkyl substances (PFAS) are a large class of synthetic chemicals widely used in industrial and consumer applications, known for their environmental persistence, bioaccumulation, and potential toxicity. Mounting toxicological evidence suggests that the kidney is a primary target organ for PFAS accumulation, yet human data regarding compound-specific renal effects remain limited. In this community-based prospective cohort study, we investigated the associations between serum PFAS concentrations and renal outcomes in 257 adults, including 48 with chronic kidney disease (CKD) and 209 with normal kidney function at baseline.

View Article and Find Full Text PDF

Development of a certified reference material for per- and polyfluoroalkyl substances (PFAS) in textiles.

Anal Bioanal Chem

September 2025

Department of Analytical Chemistry and Reference Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany.

Per- and polyfluoroalkyl substances (PFASs) are a large group of emerging organic pollutants that contaminate the environment, food, and consumer products. Textiles and other outdoor products are a major source of PFAS exposure due to their water-repellent impregnations. Determination of PFASs in textiles is increasingly important for enhancing their contribution to the circular economy.

View Article and Find Full Text PDF

PER: and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that accumulate in aquatic ecosystems, posing a threat to wildlife. This study examines the potential of Asian clams (Corbicula fluminea) as an active biomonitoring species for assessing PFAS contamination in the Scheldt River, Belgium. Clams were exposed in cages at six sites along the river for a six-week exposure period, with simultaneous collection of sediment and water samples at each site.

View Article and Find Full Text PDF

Sweat-amplified dermal transfer and combined toxicity of per- and polyfluoroalkyl substances and organophosphate esters mixtures in children's textiles.

Sci Total Environ

September 2025

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Electronic address:

The widespread application of chemical additives in textiles raises concerns about dermal exposure, especially in children. We analyzed 28 per- and polyfluoroalkyl substances (PFAS) and 9 organophosphate esters (OPEs) in household textiles and children's garments. PFAS were detected in 87.

View Article and Find Full Text PDF

Mapping PFAS behavior via meta-analysis of soil dynamics, predictive modeling and policy integration.

Sci Total Environ

September 2025

University Hohenheim, Department of Process Analytics and Cereal Science, Stuttgart, 70599, Germany.

Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants with increasing prevalence in agricultural soils, primarily introduced through biosolid application, wastewater irrigation, and atmospheric deposition. This review provides a meta-analysis of terminologies across 145 peer-reviewed studies, identifying inconsistency in the classification of PFAS subgroups-such as "long-chain vs. short-chain," "precursors," and "emerging PFAS"-which hinders regulatory harmonization and model calibration.

View Article and Find Full Text PDF