98%
921
2 minutes
20
The unpredictable biodegradation of fluorotelomer (FT)-based per- and polyfluoroalkyl substances (PFAS) causes complicated risk management of PFAS-impacted sites. Here, we have successfully used redundancy analysis to link FT-based precursor biodegradation to key microbes and genes of soil microbiomes shaped by different classes of carbon sources: alcohols (C2-C4), alkanes (C6 and C8), an aromatic compound (phenol), or a hydrocarbon surfactant (cocamidopropyl betaine [CPB]). All the enrichments defluorinated fluorotelomer alcohols (:2 FtOH; = 4, 6, 8) effectively and grew on 6:2 fluorotelomer sulfonate (6:2 FtS) as a sulfur source. The butanol-enriched culture showed the highest defluorination extent for FtOHs and 6:2 FtS due to the high microbial diversity and the abundance of desulfonating and defluorinating genes. The CPB-enriched culture accumulated more 5:3 fluorotelomer carboxylic acid, suggesting unique roles of and . Enhanced 6:2 FtOH defluorination was observed due to a synergism between two enrichments with different carbon source classes except for those with phenol- and CPB-enriched cultures. While the 6:2 fluorotelomer sulfonamidoalkyl betaine was not degraded, trace levels of 6:2 fluorotelomer sulfonamidoalkyl amines were detected. The identified species and genes involved in desulfonation, defluorination, and carbon source metabolism are promising biomarkers for assessing precursor degradation at the sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580179 | PMC |
http://dx.doi.org/10.1021/acs.est.4c06471 | DOI Listing |
Chembiochem
September 2025
Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Beutenbergstrasse 11a, 07745, Jena, Germany.
Soils harbor some of the most diverse microbiomes on Earth. Interactions within these microbial communities are often mediated by natural products, many functioning as chemical signals. Specialized metabolites known as arginoketides, or arginine-derived polyketides, have been linked to mediate these interactions.
View Article and Find Full Text PDFMicrob Biotechnol
September 2025
Departamento de Biología Funcional, Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
The seed microbiota, a still underexplored component of plant-microbe interactions, plays a pivotal role in plant development and holds significant promise for advancing sustainable agriculture. By influencing essential processes such as germination, stress tolerance, nutrient acquisition and defence, seed-associated microbes offer unique advantages beyond those of soil- or rhizosphere-associated microbiomes. Notably, they are transmitted both vertically and horizontally; however, fundamental questions remain regarding their origin, ecological dynamics and functional roles across environments.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.
Natural soils are reservoirs of potentially beneficial microbes that can improve plant performance. Here, we isolated 75 bacterial strains from surface-sterilised roots of Arabidopsis thaliana (Arabidopsis) grown in a natural soil derived from an alder swamp. Culture-dependent isolation of individual strains from the roots, followed by monoassociation-based screening, identified seven bacteria that promoted Arabidopsis seedling weight.
View Article and Find Full Text PDFMol Ecol
September 2025
State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.
Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).
View Article and Find Full Text PDFGlob Chang Biol
September 2025
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands.
Droughts are increasing with climate change, affecting the functioning of terrestrial ecosystems and limiting their capacity to mitigate rising atmospheric CO levels. However, there is still large uncertainty on the long-term impacts of drought on ecosystem carbon (C) cycling, and how this determines the effect of subsequent droughts. Here, we aimed to quantify how drought legacy affects the response of a heathland ecosystem to a subsequent drought for two life stages of Calluna vulgaris resulting from different mowing regimes.
View Article and Find Full Text PDF