A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Spatio-temporal envolutional graph neural network for traffic flow prediction in UAV-based urban traffic monitoring system. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the advancement of modern UAV technology, UAVs have become integral to creating traffic management monitoring systems. Additionally, UAV-based traffic monitoring systems can predict traffic flow by integrating machine learning methods. Specifically, traffic flow data contains both spatial and temporal information, which can be effectively processed by graph neural networks (GNNs). However, GNNs often face the challenge of oversmoothing, which hinders their ability to capture complex structures in the data. The Spatio-Temporal Graph Ordinary Differential Equations (STGODE) model addresses this issue by introducing Neural Ordinary Differential Equations (NODEs) to construct deeper GNNs. Despite this, STGODE relies on initially predefined semantic neighborhood matrices, which do not adapt well to the dynamic nature of traffic information. To overcome this limitation, we propose an evolutionary graph neural network for traffic prediction, capable of continuously updating the semantic adjacency matrix throughout the training process. This dynamic evolution of the semantic adjacency matrix allows it to adapt to the features and semantic relations of the current data, enhancing its ability to capture the complexity and variability of traffic patterns. We validate our approach through experiments on several real-world datasets, demonstrating that our method outperforms state-of-the-art benchmarks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538314PMC
http://dx.doi.org/10.1038/s41598-024-78335-0DOI Listing

Publication Analysis

Top Keywords

graph neural
12
traffic flow
12
traffic
9
neural network
8
network traffic
8
traffic monitoring
8
monitoring systems
8
ability capture
8
ordinary differential
8
differential equations
8

Similar Publications