Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Recent advancements in phase-change memory (PCM) technology have predominantly stemmed from material-level designs, which have led to fast and durable device performances. However, there remains a pressing need to address the enormous energy consumption through device-level electrothermal solutions. Thus, the concept of a 3D heater-all-around (HAA) PCM fabricated along the vertical nanoscale hole of dielectric/metal/dielectric stacks is proposed. The embedded thin metallic heater completely encircles the phase-change material, so it promotes highly localized Joule heating with minimal loss. Hence, a low RESET current density of 6-8 MA cm and operation energy of 150-200 pJ are achieved even for a sizable hole diameter of 300 nm. Beyond the conventional 2D scaling of the bottom electrode contact, it accordingly enhances ≈80% of operational energy efficiency compared to planar PCM with an identical contact area. In addition, reliable memory operations of ≈10 cycles and the 3-bits-per-cell multilevel storage despite ultrathin (<10 nm) sidewall deposition of GeSbTe are optimized. The proposed 3D-scaled HAA-PCM architecture holds promise as a universally applicable backbone for emerging phase-change chalcogenides toward high-density, ultralow-power computing units.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202401381 | DOI Listing |