Can machine learning assist in systemic sclerosis diagnosis and management? A scoping review.

J Scleroderma Relat Disord

Divisions of Rheumatology and Clinical Immunology and Allergy, Departments of Medicine and Pediatrics, McMaster University, Hamilton, ON, Canada.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This scoping review aims to summarize the existing literature on how machine learning can be used to impact systemic sclerosis diagnosis, management, and treatment. Following Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) reporting guidelines, Embase, Web of Science, Medline (PubMed), IEEE Xplore, and ACM Digital Library were searched from inception to 3 March 2024, for primary literature reporting on machine learning models in any capacity regarding scleroderma. Following robust triaging, 11 retrospective studies were included in this scoping review. Three studies focused on the diagnosis of scleroderma to influence preferred management and nine studies on treatment and predicting treatment response to scleroderma. Nine studies used supervision in their machine learning model training; two used supervised and unsupervised training and one used solely unsupervised training. A total of 817 patients were included in the data sets. Seven of the included articles used patients from the United States, one from Belgium, two from Japan, and two from China. Although currently limited to retrospective studies, the results indicate that machine learning modeling may have a role in early diagnosis, management, therapeutic decision-making, and in the development of future therapies for systemic sclerosis. Prospective studies examining the use of machine learning in clinical practice are recommended to confirm the utility of machine learning in patients with systemic sclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528611PMC
http://dx.doi.org/10.1177/23971983241253718DOI Listing

Publication Analysis

Top Keywords

machine learning
28
systemic sclerosis
16
scoping review
12
sclerosis diagnosis
8
diagnosis management
8
retrospective studies
8
unsupervised training
8
machine
7
learning
6
studies
6

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF