Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Olefin-linked covalent organic frameworks (OL-COFs) show great promise for visible-light-driven photocatalysis. Manipulating atomic-level donor-acceptor interactions in OL-COFs is key to understanding their exciton effects in this system. Here, three OL-COFs are presented with orthorhombic lattice structures, synthesized via Knoevenagel polycondensation reaction of terephthalaldehyde and tetratopic monomers featuring phenyl, benzo[c][1,2,5]oxadiazole, and benzo[c][1,2,5]thiadiazole moieties. These OL-COFs feature tunable donor-acceptor interactions, making them ideal for studying exciton effects in olefin-linked systems. Comprehensive analyses, including temperature-dependent photoluminescence spectra, ultrafast spectroscopy, and theoretical calculations, reveal that stronger donor-acceptor interactions lead to reduced exciton binding energy (E), accelerated exciton dissociation, and longer-lived photogenerated charges, thereby enhancing photocatalytic performance. Notably, The TMO-BDA COF, with the lowest E, demonstrates superior photocatalytic activity in one-pot sequential organic transformation and excellent catalytic performance in gram-scale reactions, highlighting its potential for practical applications. This work provides valuable insights into regulating the exciton effect at the molecular level in OL-COFs, offering pathways to enhance photocatalytic efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202408324DOI Listing

Publication Analysis

Top Keywords

exciton effects
12
donor-acceptor interactions
12
photocatalytic activity
8
olefin-linked covalent
8
covalent organic
8
organic frameworks
8
ol-cofs
5
exciton
5
intrareticular exciton
4
effects regulate
4

Similar Publications

Perovskite-silicon tandem solar cells have attracted considerable attention owing to their high power conversion efficiency (PCE), which exceeds the limits of single-junction devices. This study focused on lead-free tin-based perovskites with iodine-bromine mixed anions. Bromide perovskites have a wide bandgap; therefore, they are promising light absorbers for perovskite-silicon tandem solar cells.

View Article and Find Full Text PDF

Hydrogen Radical Mediated Concerted Electron-Proton Transfer in 1D Sulfone-based Covalent Organic Framework for Boosting Photosynthesis of HO.

Angew Chem Int Ed Engl

September 2025

College of Smart Materials and Future Energy, Fudan University, Songhu Road 2005, Shanghai, 200438, P.R. China.

Solar-driven photocatalytic oxygen reduction reaction using covalent organic frameworks (COFs) offers a promising approach for sustainable hydrogen peroxide (HO) production. Despite their advantages, the reported COFs-based photocatalysts suffer insufficient photocatalytic HO efficiency due to the mismatched electron-proton dynamics. Herein, we report three one-dimensional (1D) COF photocatalysts for efficient HO production via the hydrogen radical (H•) mediated concerted electron-proton transfer (CEPT) process.

View Article and Find Full Text PDF

Mechanisms of Enhanced Efficiency and Stability in Perovskite Luminescence via Rb Interstitial Doping.

J Phys Chem Lett

September 2025

Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China.

Metal halide perovskites have garnered significant attention due to their exceptional photoelectric properties. The alkali metal doping strategy has been demonstrated to effectively modulate grain size, control crystallization kinetics, and adjust band gap characteristics in perovskite. This study employs the first-principles calculations to reveal that the selection of alkali metal species and their corresponding doping methodologies exert markedly distinct influences on both the electronic properties and ion migration kinetics of CsPbBr perovskites.

View Article and Find Full Text PDF

Ionic Liquid Engineered Defect-Driven Green Emitting Zero-Dimensional CsPbBr Microdisks.

J Phys Chem Lett

September 2025

School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda, Bhubaneswar 752050, Odisha, India.

Quantum-confined perovskites represent an emerging class of materials with great potential for optoelectronic applications. Specifically, zero-dimensional (0D) perovskites have garnered significant attention for their unique excitonic properties. However, achieving phase-pure, size-tunable 0D perovskite materials and gaining a clear understanding of their photophysical behavior remains challenging.

View Article and Find Full Text PDF

Polariton Spin Separation and Propagation by Rashba-Dresselhaus Spin-Orbit Coupling in an Anisotropic Two-Dimensional Perovskite Microcavity.

Nano Lett

September 2025

Key Laboratory of Micro & Nano Photonic Structures, Department of Optical Science and Engineering, College of Future Information Technology, Fudan University, Shanghai 200433, China.

The separation and propagation of spin are vital to understanding spin-orbit coupling (SOC) in quantum systems. Exciton-polaritons, hybrid light-matter quasiparticles, offer a promising platform for investigating SOC in quantum fluids. By utilization of the optical anisotropy of materials, Rashba-Dresselhaus SOC (RDSOC) can be generated, enabling robust polariton spin transport.

View Article and Find Full Text PDF