Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Boronic acid analogs are crucial in modern organic chemistry and drug development, serving as versatile reagents and intermediates with significant therapeutic applications. This area has gained increased interest with the recent development of the drug 4-boron-L-phenylalanine (L-BPA) for boron neutron capture therapy (BNCT). Fluorescent probe technology offers an essential pathway for imaging drugs in vitro and in vivo, providing high sensitivity with great spatial and temporal resolution for both disease diagnosis and drug development. In this paper, we designed and investigated three fluorescent probes-W-1-NN, W-2-NS and W-3-NO-for sensing 4-boron-L-phenylalanine (L-BPA). Among these, only W-1-NN reacts with L-BPA, resulting in a spectral blue-shift change. This probe can "ratiometrically" and specifically detect L-BPA among various metals, with a limit of detection (LOD) of 7.11 μM. Mechanistic studies revealed that the addition of L-BPA disrupts the inherent ESIPT mechanism of W-1-NN in protonic solutions, resulting in the appearance of a new peak at 372 nm. Additionally, theoretical computational studies have also demonstrated that the complexation of W-1-NN with L-BPA triggers a change in the resonance structure, resulting in a larger energy gap and causing a blue shift in the spectrum. Furthermore, W-1-NN has been successfully applied to the detection of L-BPA in human urine. Therefore, the template probe with N/O as the target and the introduction of N atoms can specifically detect L-BPA. This template probe lays the foundation for the detection of L-BPA, and provides great possibilities for the future realization of the template probe to be connected with different fluorophores to make it emit at long wavelengths to reach the target of the near-infrared.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.125318 | DOI Listing |