98%
921
2 minutes
20
Background: The pivotal responsibility of GABAergic interneurons is inhibitory neurotransmission; in this way, their significance lies in regulating the maintenance of excitation/inhibition (E/I) balance in cortical circuits. An abundance of glucocorticoids (GCs) exposure results in a disorder of GABAergic interneurons in the prefrontal cortex (PFC); the relationship between this status and an enhanced vulnerability to neuropsychiatric ailments, like depression and anxiety, has been identified, but this connection is still poorly understood because systematic and comprehensive research is lacking. Here, we aim to investigate the impact of dexamethasone (DEX, a GC receptor agonist) on GABAergic interneurons in the PFC of eight-week-old adult male mice.
Methods: A double-blind study was conducted where thirty-two mice were treated subcutaneously either saline or DEX (0.2 mg/10 ml per kg of body weight) dissolved in saline daily for 21 days. Weight measurements were taken at five-day intervals to assess the emotional changes in mice as well as the response to DEX treatment. Following the 21-day regimen of DEX injections, mice underwent examinations for depression/anxiety-like behaviours and GABAergic marker expression in PFC.
Results: In a depression/anxiety model generated by chronic DEX treatment, we found that our DEX procedure did trigger depression/anxiety-like behaviors in mice. Furthermore, DEX treatment reduced the expression levels of a GABA-synthesizing enzyme (GAD67), Reelin, calcium-binding proteins (parvalbumin and calretinin) and neuropeptides co-expressed in GABAergic neurons (somatostatin, neuropeptide Y and vasoactive intestinal peptide) in the PFC were reduced after 21 days of DEX treatment; these reductions were accompanied by decreases in brain size and cerebral cortex thickness.
Conclusion: Our results indicate that a reduction in the number of GABAergic interneurons may result in deficiencies in cortical inhibitory neurotransmission, potentially causing an E/I imbalance in the PFC; this insight suggests a potential breakthrough strategy for the treatment of depression and anxiety.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524930 | PMC |
http://dx.doi.org/10.3389/fendo.2024.1433026 | DOI Listing |
Mol Psychiatry
September 2025
Department of Neurology, Zhongshan Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
Atrophy of the subiculum is the earliest hippocampal anatomical marker of Alzheimer's disease (AD) and is closely associated with early cognitive decline. However, the underlying mechanisms driving this vulnerability remain unclear. In this study, using the 5×FAD mouse model, we identified significant amyloid-beta (Aβ) accumulation in the subiculum during the early stages of AD.
View Article and Find Full Text PDFNeuroscience
September 2025
Institute of Physiology of the Czech Academy of Sciences, Videnska 1830, 14200 Prague 4, Czech Republic.
Impairments in decision-making and behavioral flexibility in patients with schizophrenia (SCZ) are currently among the most investigated aspects of SCZ. Increased GLUergic excitatory activity and decreased GABAergic inhibitory activity induce mPFC-vHPC γ/θ band desynchronization in many tasks where behavioral flexibility is tested. However, these tasks used "perceptual" decision-making/flexibility but not navigational decision-making/flexibility.
View Article and Find Full Text PDFScience
September 2025
Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
Identifying the computational roles of different neuron families is crucial for understanding neural networks. Most neural diversity is embodied in various types of γ-aminobutyric acid-mediated (GABAergic) interneurons, grouped into four major families. We collected datasets of opto-tagged neurons from all four families, along with excitatory neurons, from both the neocortex and hippocampus.
View Article and Find Full Text PDFNeuroscience
September 2025
Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brasil; Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK. Electronic address:
Zika virus (ZIKV) infection during gestation causes fetal brain abnormalities such as microcephaly, cortical malformations, and motor defects. Infected infants often develop epilepsy and other neurodevelopmental impairments later in life. Animal models show that ZIKV infection leads to seizures and neuroinflammation, disrupting brain development and function.
View Article and Find Full Text PDFStem Cell Res Ther
August 2025
State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
Background: Schizophrenia, autism, and epilepsy are associated with dysfunctions in cortical GABAergic interneurons. Calretinin-expressing interneurons, the most prominent type, constitute approximately 50% of human cortical GABAergic neurons and are closely linked to cognition. However, the difficulty in obtaining sufficient calretinin interneurons has significantly hindered the study of their development and functions.
View Article and Find Full Text PDF