Beyond viability: Advancing CHO cell culture process strategies to modulate host cell protein levels.

N Biotechnol

Biologics Process Research & Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, NJ 07065, United States. Electronic address:

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chinese Hamster Ovary (CHO) cells are widely utilized in bioprocessing industry for monoclonal antibody (mAb) production. In many instances, challenges persist in achieving sufficient clearance of Host Cell Proteins (HCPs) in the final drug substance. While purification strategies usually offer substantial HCP clearance, certain "problematic" HCPs, particularly lipases, continue to pose significant challenges. This study investigates the accumulation of various "problematic" HCPs in CHO cell culture using transcriptomics, revealing correations between cell culture parameters and HCP level. Contrary to conventional assumptions, viability alone does not reliably predict HCP levels, with factors such as clone selection, host cell line choice, media and feed compositions significantly influencing HCP accumulation. Leveraging transcriptomics-based approaches, we demonstrate the potential of upstream process control strategies to mitigate HCP presence and improve biologic product quality. Our findings underscore the importance of considering diverse cell culture parameters in bioprocess optimization to ensure product stability and quality. While promising, further research is needed to elucidate the mechanisms underlying HCP release and propagation through downstream processing stages, emphasizing the necessity of a comprehensive integrated approach to HCP control in biologics production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbt.2024.10.003DOI Listing

Publication Analysis

Top Keywords

cell culture
16
host cell
12
cho cell
8
"problematic" hcps
8
culture parameters
8
cell
7
hcp
7
viability advancing
4
advancing cho
4
culture
4

Similar Publications

Epinephelus tukula is an economically important aquaculture animal, and a major parent in grouper crossbreeding. To better preserve and exploit E. tukula germplasm resources, a core collection (containing 34 individuals derived from 10 genetic groups) was first constructed based on phenotypic growth traits and whole-genome resequencing (WGS) data.

View Article and Find Full Text PDF

Defective wounds pose health risks, and treatment is challenging. Umbilical cord-derived mesenchymal stem cells (UCMSCs) show promise for healing. Primary UCMSCs were isolated and extracted in vitro, and the proliferation and differentiation characteristics were detected by flow cytometry and trilineage differentiation, and a 3D spherical cell culture was performed.

View Article and Find Full Text PDF

Correction: Distinct autophagy-inducing abilities of similar-sized nanoparticles in cell culture and live .

Nanoscale

September 2025

Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.

Correction for 'Distinct autophagy-inducing abilities of similar-sized nanoparticles in cell culture and live ' by Qin Wang , , 2018, , 23059-23069, https://doi.org/10.1039/C8NR05851B.

View Article and Find Full Text PDF

Construction of Silver-Calcium Micro-Galvanic Cell on Titanium for Immunoregulation Osteogenesis.

BME Front

September 2025

State Key Laboratory of High Performance Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

This work aims to construct a functional titanium surface with spontaneous electrical stimulation for immune osteogenesis and antibacteria. A silver-calcium micro-galvanic cell was engineered on the titanium implant surface to spontaneously generate microcurrents for osteoimmunomodulation and bacteria killing, which provides a promising strategy for the design of a multifunctional electroactive titanium implant. Titanium-based implants are usually bioinert, which often leads to inflammation-induced loosening.

View Article and Find Full Text PDF