Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chiral lead halide perovskites (chiral LHPs) have emerged as one of the best candidates for opto-spintronics due to their large spin-orbit coupling (SOC) and unique chirality-induced spin selectivity (CISS) even in the absence of a magnetic field. Here, we report the impact of halide composition on circular dichroism (CD) and magneto-photoluminescence (PL) effects of chiral 2D LHPs (/-MBA)PbBrI (MBA = CHCH(CH)NH). By tuning the mixing ratio of Br/I halide anions, we find that (/-MBA)PbBrI thin films exhibit tunable and wide wavelength range CD signals. Simultaneously, the main CD signals near the exciton absorption band gradually blue shift until they disappear. Moreover, the halogen-dependent negative magneto-PL effects of (/-MBA)PbBrI thin films excited by left/right circularly polarized light can be detected at room temperature. We demonstrated that the halide composition can effectively modulate exciton splitting and chirality transfer in (/-MBA)PbBrI owing to the chirality-induced SOC and crystalline structure transition, which lead to the adjustable CD signals. The interplay of Rashba-type band spin splitting and spin mixing among bright triplet exciton states is responsible for the halogen-dependent magneto-PL effect of chiral 2D LHPs. This study enables chiral 2D LHPs with CISS to be a new class of promising opto-spintronics materials for exploring high-performance spin-light-emitting diodes by halide engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.4c03998DOI Listing

Publication Analysis

Top Keywords

chiral lhps
16
circular dichroism
8
dichroism magneto-photoluminescence
8
magneto-photoluminescence effects
8
effects chiral
8
chiral lead
8
lead halide
8
halide perovskites
8
perovskites chiral
8
halide composition
8

Similar Publications

Effective enantiomer separation is vital in many important sectors like pharmaceuticals, agrochemicals, food safety, and biomedical imaging, yet conventional methods are costly, slow, and chemical intensive. This has sparked interest in exploring novel materials like chiral lead halide perovskite nanocrystals to address these challenges. This newly emerging chiral material combines the superior properties of traditional halide perovskites with the unique attributes of chirality, resulting in distinct optoelectronic behaviors.

View Article and Find Full Text PDF

Chiral lead halide perovskites (chiral LHPs) have emerged as one of the best candidates for opto-spintronics due to their large spin-orbit coupling (SOC) and unique chirality-induced spin selectivity (CISS) even in the absence of a magnetic field. Here, we report the impact of halide composition on circular dichroism (CD) and magneto-photoluminescence (PL) effects of chiral 2D LHPs (/-MBA)PbBrI (MBA = CHCH(CH)NH). By tuning the mixing ratio of Br/I halide anions, we find that (/-MBA)PbBrI thin films exhibit tunable and wide wavelength range CD signals.

View Article and Find Full Text PDF

Chirality-Mediated 1D-to-2D Phase Transition in Hybrid Lead Halide Perovskites.

J Am Chem Soc

October 2024

School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.

Dimensionality engineering plays a pivotal role in optimizing the performance, ensuring long-term stability, and expanding the versatile applications of lead halide perovskites (LHPs). Currently, the manipulation of LHP dimensions primarily occurs during the synthesis stage, a procedure hampered by constraints, including synthetic complexity and irreversibility. This investigation successfully achieved a transition from one-dimensional (1D) to two-dimensional (2D) structures in chiral LHPs by applying hydrostatic pressure.

View Article and Find Full Text PDF

The phenomenon of pressure-induced emission alterations related to complex excitonic dynamics in 2D lead halide perovskites (LHPs) has gained considerable attention for understanding their structure-property relationship and obtaining inaccessible luminescence under ambient conditions. However, the well-known pressure-induced emissions are limited to the formation of self-trapped excitons (STEs) due to the structural distortion under compression, which goes against the advantage of the highly pure emission of LHPs. Here, the pressure-induced detrapping from STEs to free excitons (FEs) accompanied by the dramatic transition from broadband orangish emission to narrow blue emission has been achieved in chiral 2D LHPs and - and -[4MeOPEA]PbBr, (4MeOPEA = 4-methoxy-α-methylbenzylammonium).

View Article and Find Full Text PDF

Chiral lead halide perovskites (LHPs) have been widely investigated in chiroptical spintronics due to their significant Rashba spin-orbit coupling (SOC) and chiral-induced spin selectivity (CISS). Ferromagnet/LHP spinterface stems from the orbital hybridization at the interface of the ferromagnet and the nonmagnetic semiconductor, where interfacial density of state is spin-dependent. By far, the impact of the ferromagnet/chiral LHP spinterface on magneto-photoluminescence (Magneto-PL) of chiral LHPs remains unknown.

View Article and Find Full Text PDF