Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Wound healing comprises four overlapping stages involving complex biochemical and cellular processes. Any lapse in this procedure causes irregular healing, which generates clinical and financial burdens for the health system. Personalized treatment is preferred to overcome the limitations of classical as well as modern methods of wound healing. This review discusses recently developed 3D printing models for personalized treatment with varying degrees of success. It is an effective approach for treating wounds by developing custom dressings tailored to the patient's needs and reducing incidents of infections. Additionally, incorporating natural or synthetic polymers can further enhance their effectiveness. Macromolecular polymers, laminin, cellulose, collagen, gelatin, etc. that make up the bulk of 3D printable bio-inks, have been essential in diverse 3D bioprinting technologies throughout the layered 3D manufacturing processes. The polymers need to be tailored for the specific requirements of printing and effector functions in cancer treatment, dental & oral care, biosensors, and muscle repair. We have explored how 3D printing can be utilized to fasten the process of wound healing at each of the four stages. The benefits as well as the future prospects are also discussed in this article.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.136991DOI Listing

Publication Analysis

Top Keywords

wound healing
16
personalized treatment
8
healing
5
involvement macromolecules
4
printing
4
macromolecules printing
4
wound
4
printing wound
4
healing management
4
management narrative
4

Similar Publications

Background: Congenital accessory auricle is a common aurcile malformation, often associated with tragus malformation, impacting the appearance and psychology of patients. To optimize surgical treatments for congenital accessory auricle with tragus malformation, this article proposes a novel classification and explores surgical strategies.

Methods: This retrospective study included 120 patients with congenital accessory auricle and tragus malformation who underwent surgery between December 2019 and June 2024.

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-α) is a cytokine involved in the immune-inflammatory response. It can induce an odontoblastic phenotype and enhance biomineralization in dental pulp mesenchymal stem cells but does not have the same effect on osteoblasts. The reasons for this differential response, despite the shared lineage of these cell types, are not yet clear.

View Article and Find Full Text PDF

This study evaluated the influence of a customized healing abutment (CHA) placed on immediate implants. It also assessed bone ridge volume, keratinized mucosal collar, and postoperative pain. Thirty-one patients needing tooth extraction and immediate implant were selected.

View Article and Find Full Text PDF

This study aimed to histomorphometrically evaluate the effect of guided bone regeneration (GBR) and two implant surfaces on the thickness and height of newly formed bone in dehiscence defects around titanium implants. Three premolars and the first bilateral molar were extracted from ten adult mongrel dogs, and 40 buccal bone dehiscences measuring 5 mm in height and 4 mm in width were created using a University of North Carolina (UNC) periodontal probe to confirm the dimensions. Forty implants were randomly assigned to one of four groups: oxidized implant surfaces (OIS, n = 10), turned/machined implant surfaces (TIS, n = 10), OIS + GBR (n = 10), and TIS + GBR (n = 10).

View Article and Find Full Text PDF

Skin scars remain a substantial clinical challenge because of their impact on appearance and psychological well-being. Lysyl oxidases catalyze collagen cross-linking, a key factor in scar development. Here, we report a randomized, double-blind, placebo-controlled phase 1 study to assess the safety and tolerability of PXS-6302, a topical pan-lysyl oxidase inhibitor, in treating mature scars (ACTRN12621001545853).

View Article and Find Full Text PDF