98%
921
2 minutes
20
Spray drying of concentrated wastewater epitomizes a harmonious convergence of technological progress, economic viability, and practicality within the realm of zero liquid discharge. Nevertheless, elevated salinity may influence the atomization and evaporation processes, along with the storage and transportation of evaporation products. This study systematically examines the influence of salinity on rotary atomization evaporation performance and evaporation products of wastewater through a series of experimental investigations. The results indicate that, under identical conditions, the overall droplet size of high-salinity wastewater is approximately 20-50% larger compared to conventional wastewater. Salinity significantly influences the atomization particle size (D), followed by rotation speed, and then influent flow rate. The high-salinity wastewater droplets manifest a multi-bubble growth pattern with earlier shell expansion, where the reduction of free water dominates the overall process dynamics. Despite the diminished evaporation rate, the total evaporation duration shortens with elevating salinity, reducing flue gas consumption by about 10%. With elevated crystalline salt content, high-salinity wastewater evaporation products exhibit pronounced hygroscopicity, manifesting as a viscous powder with suboptimal flowability (FF 3.57) at a 2 wt% moisture content. This study bridges the gap in rotary spray drying technology for high-salinity wastewater treatment, contributing to sustainable water conservation and energy-efficient management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.123044 | DOI Listing |
Adv Mater
September 2025
Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
Global water scarcity demands next-generation desalination technologies that transcend the limitations of energy-intensive processes and salt accumulation. Herein, a groundbreaking interfacial solar steam generation system capable of simultaneous hypersaline desalination and ambient energy harvesting is introduced. Through hierarchical hydrogel architecture incorporating a central vertical channel and radial channels with gradient apertures, the design effectively decouples salt transport and water evaporation: solar-driven fluid convection directs water outward for evaporation, while inward salt migration prevents surface crystallization and redistributes excess heat.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.
Mining metals for the advancement of society requires innovative and cost-effective remediation strategies that protect the environment and, ideally, allow for concentration and recovery of metals from waste streams. Microbially mediated strategies that remove metals from aqueous waste streams via sorption and/or oxidation-reduction reactions show promise as eco-friendly, cost-effective solutions. Our objective was to use Mn-oxidizing fungi, isolated from the Soudan Underground Mine State Park, MN, a high-salinity, mine-impacted environment, to sequester transition metals Mn, Co, Cu, and Ni.
View Article and Find Full Text PDFCurr Microbiol
August 2025
Postgraduate Program in Agricultural Microbiology, Department of Microbiology, Federal University of Viçosa, Viçosa, Brazil.
Halophilic and halotolerant microorganisms, as members of the extremophile group, hold significant potential for both industrial applications and astrobiological research. Conventional microorganisms used in wastewater treatment and bioremediation often cannot withstand the high salinity present in industrial effluents and certain contaminated environments. Similarly, planetary environments such as those on Mars, Europa, and Enceladus are often considered inhospitable due to extreme salinity, temperatures, and radiation levels.
View Article and Find Full Text PDFEnviron Technol
August 2025
Guizhou Industry Polytechnic College, Guiyang, People's Republic of China.
The small amount of organic impurities in the pre-treated saline wastewater will affect the original solubility of the saline wastewater, which is one of the key issues that restrict the evaporation of saline wastewater with near-zero discharge under the working condition. We have investigated the solid-liquid phase equilibrium relationship under typical organic impurities in falling film evaporation tubes with different parameters. Results show the phase diagram of Na, Mg//Cl-HO in the presence of organic impurities belongs to the phase diagram of a simple system.
View Article and Find Full Text PDFWater Res
August 2025
State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026, China. Electronic address:
Reversing the detrimental effects of complex water matrices (e.g., HCO) on micropollutant degradation through modulation of the reaction pathway remains a major challenge.
View Article and Find Full Text PDF