98%
921
2 minutes
20
Midinfrared (2.5-25 μm) spectroscopy is an ideal tool for identifying chemicals in a nondestructive manner. The traditional platform is a Fourier transform infrared (FTIR) spectrometer, but this is too bulky, expensive, and power-hungry for many applications. There is therefore a growing demand for small, lightweight, and cost-effective microspectrometers for use in the field. One emerging platform is the filter-array detector-array microspectrometer. It pairs a broadband detector array with a thin and rigid array of spectral filters to offer a robust, compact platform for real-time in situ sensing. However, most demonstrations have only focused on identifying a single chemical against a null sample, even though many applications would involve multianalyte detection. In this work, we show a rare attempt at simultaneously tracking multiple analytes with a metasurface filter-array microspectrometer. The metasurface consists of periodic lattices of subwavelength circular apertures in an aluminum layer to create an array of bandpass filters. The filter array is imaged with an off-the-shelf microbolometer via a reverse-lens imaging setup to simultaneously monitor the concentration of ethanol and methanol in gasoline. This represents an important application of fuel quality monitoring. Chemometric models (PLS and SVR) are trained and tested on gasoline blends with ethanol and methanol contents, both ranging from 0% to 20% v/v. A support vector machine regression (SVR) model with a cubic kernel was found to have the lowest combined prediction errors. The root-mean-square-error of prediction (RMSEP) for ethanol and methanol are 1.23% and 1.84% v/v; the corresponding pseudounivariate limit of detection is found to be 4.22% and 6.86% v/v, respectively. This work takes the emerging field of metasurface-based mid-infrared spectrometers from single- to multianalyte detection, thereby considerably expanding their range of potential applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.4c01220 | DOI Listing |
Biosens Bioelectron
September 2025
Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School
DNAzymes possessing kinase-like activities have long held theoretical promise, yet their practical implementation has remained significantly limited. Notably, DNAzyme kinase 1 (DK1), discovered over two decades ago, exhibits a unique self-phosphorylation capability upon encountering specific substrates like ATP, but its broad-based and programmable applications have not yet been fully realized. In this study, we innovatively couple DK1's autophosphorylation mechanism with the PfAgo to establish a novel programmable cascade sensing platform named RASTEN (Robust pfAgo-based Strategy for POC Testing Non-nucleic Acid and Nucleic Acid).
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
David Price Evans Global Health and Infectious Diseases Group, Pharmacology & Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7BE, UK.
Early diagnosis of Alzheimer's disease (AD) is hindered by the high cost, complexity, and centralization of current diagnostic platforms such as enzyme-linked immunosorbent assay (ELISA) and single-molecule array (SIMOA). Here, an integrated point-of-care (PoC) biosensing platform is reported based on redox-active polyphenol red molecularly imprinted polymers (pPhR MIPs) deposited on highly porous gold (HPG) electrodes for the ultrasensitive, reagent-free detection of phosphorylated tau 181 (p-tau 181) in undiluted plasma and serum. The unique electrochemical interface combines the signal-enhancing properties of HPG with the redox functionality of pPhR, eliminating the need for external redox probes.
View Article and Find Full Text PDFFront Oncol
August 2025
Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, United States.
Circulating tumor DNA (ctDNA) has emerged as a promising biomarker for the early detection of esophageal cancer (EC), offering a minimally invasive means to assess tumor-derived genomic and epigenomic alterations. This review synthesizes current data on ctDNA biology, detection technologies, diagnostic performance, and clinical applicability in both esophageal adenocarcinoma and squamous cell carcinoma. We conducted a comprehensive literature review of PubMed-indexed studies on ctDNA in EC, emphasizing recent (January 1, 2019- December 31, 2024) findings, systematic reviews, and meta-analyses.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) spectroscopy represents a powerful analytical platform that combines non-destructive, label-free molecular identification with exceptional sensitivity for trace-level detection. Its capacity to generate information-rich spectral fingerprints makes SERS particularly advantageous for simultaneous multi-analyte analysis across diverse sample matrices, including complex biological systems. This study addresses the analytical challenges associated with identifying and quantifying multiple molecular species in complex environments by integrating SERS with advanced machine learning methodologies.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2025
Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Lab
The simultaneous monitoring of hypochlorous acid (HClO) and pH dynamics is crucial for deciphering their synergistic roles in oxidative stress-related pathologies and environmental processes, yet remains technically challenging due to spectral interference and divergent response mechanisms in existing probes. Herein, we present RN-HP, a rationally engineered fluorescent probe capable of detecting HClO and pH through dual independent emission channels. RN-HP exhibited significantly enhanced fluorescence at 577 nm in the presence of HOCl, demonstrating good selectivity and high sensitivity (linear range: 0.
View Article and Find Full Text PDF