Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hepatic de novo lipogenesis (DNL) is a fundamental physiologic process that is often pathogenically elevated in metabolic disease. Treatment is limited by incomplete understanding of the metabolic pathways supplying cytosolic acetyl-CoA, the obligate precursor to DNL, including their interactions and proportional contributions. Here, we combined extensive C tracing with liver-specific knockout of key mitochondrial and cytosolic proteins mediating cytosolic acetyl-CoA production. We show that the mitochondrial pyruvate carrier (MPC) and ATP-citrate lyase (ACLY) gate the major hepatic lipogenic acetyl-CoA production pathway, operating in parallel with acetyl-CoA synthetase 2 (ACSS2). Given persistent DNL after mitochondrial citrate carrier (CiC) and ACSS2 double knockout, we tested the contribution of exogenous and leucine-derived acetoacetate to acetoacetyl-CoA synthetase (AACS)-dependent DNL. CiC knockout increased acetoacetate-supplied hepatic acetyl-CoA production and DNL, indicating that ketones function as mitochondrial-citrate reciprocal DNL precursors. By delineating a mitochondrial-cytosolic DNL substrate supply network, these findings may inform strategies to therapeutically modulate DNL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856365PMC
http://dx.doi.org/10.1016/j.cmet.2024.10.013DOI Listing

Publication Analysis

Top Keywords

acetyl-coa production
12
hepatic novo
8
novo lipogenesis
8
substrate supply
8
supply network
8
dnl
8
cytosolic acetyl-coa
8
acetyl-coa
5
hierarchical hepatic
4
lipogenesis substrate
4

Similar Publications

Microbial Physiological Adaptation to Biodegradable Microplastics Drives the Transformation and Reactivity of Dissolved Organic Matter in Soil.

Environ Sci Technol

September 2025

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.

The turnover of dissolved organic matter (DOM) in soil regulated by biodegradable microplastics (MPs) has garnered much attention due to its profound impact on the storage and stability of soil organic matter. However, the transformation and reactivity of plant-derived and microbially derived DOM by microorganisms adapted to biodegradable MPs, and the involved microbial physiological processes, remain nearly unknown. Here, we added virgin and aged polylactic acid (PLA) and polyhydroxyalkanoate (PHA) to agricultural soils and incubated for 56 days.

View Article and Find Full Text PDF

Severe burns are a major global health concern, and are associated with long-term physical and psychological impairments, multi-organ dysfunction, and substantial morbidity and mortality. While burn injuries in adults trigger systemic immuno-metabolic alterations-characterized by white adipose tissue browning, elevated resting energy expenditure, widespread catabolism, and inflammation-these adaptive responses are considerably impaired in older adults, with molecular mechanisms behind these differences remaining largely unclear. As a key regulator of systemic metabolism, investigating the pathological role of adipose tissue (AT) postburn may reveal novel targets that could potentially improve patient outcomes.

View Article and Find Full Text PDF

Endothelial-to-mesenchymal transition (EndMT) is a critical contributor of renal fibrosis in diabetic kidney disease (DKD). Asiatic acid (AA), a natural triterpenoid compound, exhibits notable endothelial protective and anti-fibrotic properties; however, its impact on EndMT in DKD remains unclear. This study aimed to investigate the therapeutic effect of AA against EndMT in DKD and the underlying mechanisms.

View Article and Find Full Text PDF

Shortawn foxtail (Alopecurus aequalis Sobol.) is a challenging weed species to manage in wheat production systems globally. In prior research, we identified a field population of A.

View Article and Find Full Text PDF

Characterization of fatty acid biosynthesis in microalga Scenedesmus - from the perspective of biofuel production.

Biochim Biophys Acta Proteins Proteom

September 2025

Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Malhaur Station Road, Lucknow 226028, India; Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Malhaur Station Road, Lucknow 226028, India. Electronic address:

Scenedesmus quadricauda, a freshwater microalga, has gained attention for its high lipid accumulation potential. However, information on fatty acid (FA) biosynthesis pathways in Scenedesmus species remains limited. Biomass (1.

View Article and Find Full Text PDF