Native mass spectrometry prescreening of G protein-coupled receptor complexes for cryo-EM structure determination.

Structure

Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA. Electronic address:

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

G protein-coupled receptors (GPCRs) are essential transmembrane proteins playing key roles in human health and disease. Understanding their atomic-level molecular structure and conformational states is imperative for advancing drug development. Recent breakthroughs in single-particle cryogenic electron microscopy (cryo-EM) have propelled the structural biology of GPCRs into a new era. Nevertheless, the preparation of suitable GPCR samples and their complexes for cryo-EM analysis remains challenging due to their poor stability and highly dynamic nature. Here, we present our online buffer exchange-native MS method combined with Direct Mass Technology (OBE-nMS+DMT) which facilitates high-throughput analysis and guides sample preparation. We applied this method to optimize the GPR119-G complex sample prior to cryo-EM analysis, leading to a 3.51 Å resolution structure from only 396 movies collected on a 200 kV Glacios. This study suggests that the OBE-nMS+DMT method emerges as a powerful tool for prescreening sample conditions in cryo-EM studies of GPCRs and other membrane protein complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625002PMC
http://dx.doi.org/10.1016/j.str.2024.10.004DOI Listing

Publication Analysis

Top Keywords

complexes cryo-em
8
cryo-em analysis
8
cryo-em
5
native mass
4
mass spectrometry
4
spectrometry prescreening
4
prescreening protein-coupled
4
protein-coupled receptor
4
receptor complexes
4
cryo-em structure
4

Similar Publications

Small molecules serve as valuable tools for probing non-apoptotic cell death mechanisms. The small molecule caspase independent lethal 56 (CIL56) induces a unique form of non-apoptotic cancer cell death that is promoted by a complex formed between zDHHC palmitoyltransferase 5 (ZDHHC5) and an accessory protein, golgin A7 (GOLGA7, also known as GCP16). The structure and function of this complex in non-apoptotic cell death regulation remain poorly understood.

View Article and Find Full Text PDF

Membrane-protein quality control in Escherichia coli involves coordinated actions of the AAA+ protease FtsH, the insertase YidC and the regulatory complex HflKC. These systems maintain proteostasis by facilitating membrane-protein insertion, folding and degradation. To gain structural insights into a putative complex formed by FtsH and YidC, we performed single-particle cryogenic electron microscopy on detergent-solubilized membrane samples, from which FtsH and YidC were purified using Ni-NTA affinity and size-exclusion chromatography.

View Article and Find Full Text PDF

Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.

View Article and Find Full Text PDF

Oncogenic role of the SLC7A13-SLC3A1 cystine transporter in human luminal breast cancer and its cryo-EM structure.

Protein Cell

September 2025

Department of Human Cell Biology and Genetics, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.

Breast cancer is a prevalent malignancy worldwide. The majority of breast cancers belong to the estrogen receptor (ER)-positive luminal subtype that can be effectively treated with antiestrogen therapies. However, a significant portion of such malignancies become hormone-refractory and incurable.

View Article and Find Full Text PDF

Molecular characterization of endosomal self RNA Rmrp-engaged TLR3 dimerization to prime innate activation.

Cell Res

September 2025

Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.

The pre-dimerization of endosome-localized RNA sensor Toll-like receptor 3 (TLR3) is required for its innate recognition, yet how TLR3 pre-dimers are formed and precisely primed for innate activation remains unclear. Here, we demonstrate that endosome-localized self RNA Rmrp directly binds to TLR3 and induces TLR3 dimerization in the early endosome but does not interact with endosome-localized TLR7, TLR8, TLR9 or cytoplasmic RNA sensor RIG-I under homeostatic conditions. Cryo-EM structure of Rmrp-TLR3 complex reveals a novel lapped conformation of TLR3 dimer engaged by Rmrp, which is distinct from the activation mechanism by dsRNA and the specific structural feature at the 3'-end of Rmrp is critical for its functional interaction with TLR3.

View Article and Find Full Text PDF