98%
921
2 minutes
20
Both cell-intrinsic and niche-derived, cell-extrinsic cues drive the specification of hematopoietic multipotent progenitors (MPPs) in the bone marrow, which comprise multipotent MPP1 cells and lineage-restricted MPP2, MPP3, and MPP4 subsets. Patients with WHIM syndrome, a rare congenital immunodeficiency caused by mutations that prevent desensitization of the chemokine receptor CXCR4, have an excess of myeloid cells in the bone marrow. Here, we investigated the effects of increased CXCR4 signaling on the localization and fate of MPPs. Knock-in mice bearing a WHIM syndrome-associated mutation () phenocopied the myeloid skewing of bone marrow in patients. Whereas MPP4 cells in wild-type mice differentiated into lymphoid cells, MPP4s in knock-in mice differentiated into myeloid cells. This myeloid rewiring of MPP4s in knock-in mice was associated with enhanced signaling mediated by the kinase mTOR and increased oxidative phosphorylation (OXPHOS). MPP4s also localized further from arterioles in the bone marrow of knock-in mice compared with wild-type mice, suggesting that the loss of extrinsic cues from the perivascular niche may also contribute to their myeloid skewing. Chronic treatment with the CXCR4 antagonist AMD3100 or the mTOR inhibitor rapamycin restored the lymphoid potential of MPP4s in knock-in mice. Thus, CXCR4 desensitization drives the lymphoid potential of MPP4 cells by dampening the mTOR-dependent metabolic changes that promote myeloid differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733996 | PMC |
http://dx.doi.org/10.1126/scisignal.adl5100 | DOI Listing |
Diverse epigenetic regulatory mechanisms ensure and regulate cellular diversity. Among others, the histone 3 lysine 9 me3 (H3K9me3) post translational modification participates in silencing lineage-inappropriate genes. H3K9me3 restricts access of transcription factors and other regulatory proteins to cell-fate controlled genes.
View Article and Find Full Text PDFFASEB J
September 2025
Department of Pharmacy, College of Pharmacy, and Institute of Pharmaceutical Science & Technology, Hanyang University ERICA, Ansan, Republic of Korea.
Cellular prion protein (PrP) is a glycoprotein tethered to the plasma membrane via a GPI-anchor, and it plays a crucial role in prion diseases by undergoing conformational change to PrP. To generate a knock-in (KI) mouse model expressing bank vole PrP (BVPrP), a KI targeting construct was designed. However, a Prnp gene sequence that encodes PrP lacking seven C-terminal amino acid residues of the GPI-anchoring signal sequence (GPI-SS) was unintentionally introduced into the construct.
View Article and Find Full Text PDFActa Neuropathol
September 2025
Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, Madrid, Spain.
TDP-43 is a nuclear protein encoded by the TARDBP gene, which forms pathological aggregates in various neurodegenerative diseases, collectively known as TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These diseases are characterized by multiple pathological mechanisms, with disruptions in lipid regulatory pathways emerging as a critical factor. However, the role of TDP-43 in the regulation of the brain lipid homeostasis and the potential connection of TDP-43 dysfunction to myelin alterations in TDP-43 proteionopathies remain poorly understood, despite the fact that lipids, particularly cholesterol, comprise nearly 70% of myelin.
View Article and Find Full Text PDFCNS Neurosci Ther
September 2025
Key Laboratory of Ministry of Education for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: The apolipoprotein E (ApoE) ε4 allele and type 2 diabetes mellitus (T2DM) are independent risk factors for Alzheimer's disease (AD), the most prevalent neurodegenerative disorder in the elderly. The T2DM patients carrying the ApoE ε4 allele exhibit heightened activation of platelet glycogen synthase kinase-3β (GSK-3β), a key downstream kinase in the insulin signaling pathway, along with more severe cognitive deficits. This observation suggests an intrinsic link between ApoE ε4, GSK-3β, and cognitive dysfunction.
View Article and Find Full Text PDFNat Cardiovasc Res
September 2025
Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA.
Sarcoplasmic/endoplasmic reticulum (SR/ER) Ca ATPase 2a (SERCA2a) mediates Ca reuptake into the SR in cardiomyocytes. The inactivation or downregulation of SERCA2a leads to reduced contractility in the failing heart. Here we show that SERCA2a is regulated by p22, a heterodimeric partner of NADPH oxidases.
View Article and Find Full Text PDF