Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Reactive oxygen species (ROS) are among the most important signaling molecules, playing a significant role in plant growth, development, and responses to various environmental stresses. Respiratory burst oxidase homologs (RBOHs) are key enzymes in ROS production. Plants tightly regulate the activation and deactivation of RBOHs through various post-translational modifications (PTMs), including phosphorylation, ubiquitination, S-nitrosylation, and persulfidation. These PTMs fine-tune ROS production, ensuring normal plant growth and development while facilitating rapid responses to abiotic and biotic stresses. This review discusses the effects of different PTMs on RBOH function and their biological relevance. Additionally, we examine the evolutionary conservation of PTM sites and emphasize the complex interplay between multiple PTMs regulating RBOHs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.20231 | DOI Listing |