Ring-Opening α,β-Difunctionalization of Cyclopropanols with Azides Enables 4-Keto-Functionalized 1,2,3-Triazole Synthesis.

Org Lett

Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Selective C-C bond cleavage and transformation of organic small molecules to create products of increased value are one of the central goals in organic chemistry. In this study, we have developed a novel TEMPO-mediated ring-opening α,β-difunctionalization of cyclopropyl alcohols with organic azides to prepare structurally important 4-keto-1,2,3-triazoles under metal- and additive-free conditions. This protocol not only provides a straightforward and efficient method for the synthesis of 4-keto-functionalized 1,2,3-triazoles in one pot but also accomplishes the goal of constructing α,β-double C-N bonds via the ring opening of cyclopropyl alcohols for the first time. Additionally, the application of the skeletons of drugs and natural products and the synthesis of Kv1.5 channel blocker further demonstrate the synthetic potential and practicability of this strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.4c03571DOI Listing

Publication Analysis

Top Keywords

ring-opening αβ-difunctionalization
8
cyclopropyl alcohols
8
αβ-difunctionalization cyclopropanols
4
cyclopropanols azides
4
azides enables
4
enables 4-keto-functionalized
4
4-keto-functionalized 123-triazole
4
123-triazole synthesis
4
synthesis selective
4
selective c-c
4

Similar Publications

Catalytic asymmetric kinetic resolution of 2-ethynylaziridines nucleophilic ring opening with amines.

Org Biomol Chem

September 2025

MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China.

The enantioselective kinetic resolution of racemic 2-ethynylaziridines ring opening with amines is realized under the catalysis of a chiral Cu(I)-bisphosphine combination. This protocol provides an expedient way to access synthetically valuable enantioenriched propargylic vicinal diamines (70%-95% yields, 14%-95% ee) and 2-ethynylaziridines (70%-95% recovery rates, 14%-95% ee) within 15-240 h under mild reaction conditions.

View Article and Find Full Text PDF

Precise Modulation of Zeolite Acidity by Alkali Metal Ions for Enhancing Catalytic Performance in CO Cycloaddition Reactions.

Inorg Chem

September 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China.

The CO cycloaddition route is an effective way to achieve efficient conversion and utilization of CO. Zeolites with diverse topologies and tunable acidic sites can efficiently promote the cycloaddition reaction of CO with epoxides. The exchangeable cations in zeolites have a great influence on the performance of the CO cycloaddition, but there are few studies on it.

View Article and Find Full Text PDF

In an attempt to react aminocyclopropenones with cyclic imines in order to synthesise amido-substituted pyrrolizidine natural products, we found that aminocyclopropenones undergo a previously unreported stereospecific and regiospecific catalyst-free, thermal ring-opening reaction with alcohols to yield β-enamino esters (also known as vinylogous carbamates or aminoacrylates). We report 21 examples in 45 to 97% isolated yield. The reaction occurs nucleophilic attack at the cyclopropenone carbonyl followed by regiospecific ring opening of the cyclopropenone with retention of alkene geometry.

View Article and Find Full Text PDF

2-Aminooxazole 1 is a key intermediate in plausible prebiotic pathways to activated pyrimidine ribonucleotides. However, its photochemistry and underlying reaction mechanism remain unclear. Here, we present a combined matrix-isolation infrared spectroscopic and computational investigation of the UV-induced photochemistry of 1.

View Article and Find Full Text PDF

Light-activated antimicrobial polymers with citronellol-enhanced bacterial accumulation for on-demand disinfection.

J Mater Chem B

September 2025

School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.

Antibacterial photodynamic therapy offers a promising approach for combating both susceptible and multidrug-resistant pathogens. However, conventional photosensitizers have limitations in terms of poor binding specificity and weak penetration for pathogens. In this study, we developed synergistic photobactericidal polymers that integrate hydrophilic toluidine blue O (TBO) with the lipophilic penetration enhancer citronellol (CT).

View Article and Find Full Text PDF