Mechanism of Gastrodin against neurotoxicity based on network pharmacology, molecular docking and experimental verification.

Biomed Pharmacother

Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Shijiazhuang, Hebei 050017, China. Electronic address:

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Disorders of glutamate metabolism and excessive release participat in multiple neuronal pathologies including ischemic stroke (IS), Alzheimer's disease (AD), or Parkinson's disease (PD). Recently, herbal medicines have been widely used and have shown satisfactory results in the treatment of neurological disorders. Gastrodin is a traditional Chinese medicine (TCM) used for the treatment of nerve injuries, spinal cord injuries, and some central nervous system diseases as well. This research examines the neuroprotective effects of Gastrodin against glutamate-induced neurotoxicity in neuronal cells.

Methods: The HERB database was used to explore the active ingredients and target genes of Gastrodia Elata. The STRING database and Cytoscape software were used to screen and construct the Protein-Protein Interaction (PPI). Furthermore, we used molecular docking to predict the potential targets of Gastrodin. The effects of Gastrodin were revealed by western blot, calcium imaging, membrane clamp, CCK8 and flow cytometry. Neuronal oxidative stress and damage were assessed by measuring malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity. Neuronal morphology was examined using Golgi-Cox staining. Finally, animal behavior was examined using novel object recognition and fear conditioning tests.

Results: We have obtained 22 components such as TM10, TM17, TM25 (Gastrodin), and 281 targets such as AKT, EGFR, and CDK1 through network pharmacology. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed these genes were significantly enriched in protein phosphorylation, protein serine/threonine/tyrosine kinase activity, apoptosis and HIF-1 signaling pathways, etc. A higher affinity between Gastrodin and AKT was revealed by PPI analysis and molecular docking. Further, Gastrodin significantly inhibited Ca influxes and excitatory synaptic transmission in cortical neurons. In addition, Gastrodin effectively alleviated neuron apoptosis, oxidative stress and damage.

Conclusion: Gastrodin has neuroprotective effects against glutamate-induced neurotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2024.117611DOI Listing

Publication Analysis

Top Keywords

molecular docking
12
gastrodin
9
network pharmacology
8
neuroprotective effects
8
effects gastrodin
8
glutamate-induced neurotoxicity
8
oxidative stress
8
mechanism gastrodin
4
gastrodin neurotoxicity
4
neurotoxicity based
4

Similar Publications

In cardiovascular research, melatonin has shown promise in exhibiting antifibrotic properties and modulating endoplasmic reticulum (ER) stress. However, the exact mechanism by which it influences myocardial fibrosis has not been fully clarified. Therefore, this research aimed to investigate the inhibitory effect of melatonin on the progression of myocardial fibrosis through a mechanism involving the BIP/PERK/CHOP signaling pathway, both in silico and in vivo experimental models.

View Article and Find Full Text PDF

Recombinant DNA technology is widely used to produce industrially and pharmaceutically important proteins. In silico analysis, performed before executing wet lab experiments has been greatly helpful in this connection. A shift in protein analysis has been observed over the past decade, driven by advancements in bioinformatics databases, tools, software, and web servers.

View Article and Find Full Text PDF

This study aimed to evaluate the antidepressant potential of Nitazoxanide (NTZ), an antiprotozoal drug with known anti-inflammatory and neuroprotective properties, in a chronic unpredictable mild stress (CUMS)-induced mice model of depression. NTZ was administered at doses of 75, 150, and 300 mg/kg, and its effects were assessed through a series of behavioral tests, including the forced swim test, tail suspension test, actophotometer test, and social interaction test. NTZ treatment at 150 and 300 mg/kg significantly improved behavioral and biochemical outcomes, relieving depressive-like symptoms and restoring neurochemical balance.

View Article and Find Full Text PDF