A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Size-Dependent Electrostatic Adsorption of Polymer-Grafted Gold Nanoparticles on Polyelectrolyte Brushes. | LitMetric

Size-Dependent Electrostatic Adsorption of Polymer-Grafted Gold Nanoparticles on Polyelectrolyte Brushes.

ACS Appl Mater Interfaces

Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Designing a functional surface that selectively adsorbs nanoparticles based on their size and shape is essential for developing an advanced adsorption-based, postsynthesis nanoparticle separation device. We demonstrate selective adsorption of larger nanoparticles from solution onto a polyelectrolyte brush by tuning the salt concentration. Specifically, a positively charged polyelectrolyte brush is created by converting pyridine groups of poly(2-vinylpyridine) to -methylpyridinium groups using methyl iodide. The adsorption kinetics and thermodynamics of poly(ethylene glycol)-grafted, negatively charged gold nanoparticles (diameters of 12 and 20 nm) were monitored as a function of salt concentration. In a salt-free solution, the polyelectrolyte brush adsorbs gold nanoparticles of both sizes. As the salinity increases, the areal number density of adsorbed nanoparticles monotonically decreases and becomes negligible at high salinity. Interestingly, there is an intermediate range of salt concentrations (i.e., 15-20 mM of NaCl) where the decrease in nanoparticle adsorption is more pronounced for smaller particles, leading to size-selective adsorption of the larger nanoparticles. As a further demonstration of selectivity, the polyelectrolyte brush is immersed in a binary mixture of 12 and 20 nm nanoparticles and found to selectively capture larger particles with ∼90% selectivity. In addition, the size distribution of as-synthesized gold nanoparticles, with an average diameter of 12 nm, was reduced by selectively removing larger particles by exposing the solution to polyelectrolyte brush surfaces. This study demonstrates the potential of a polyelectrolyte brush separation device to remove larger nanoparticles by controlling electrostatic interactions between polymer brushes and particles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c14774DOI Listing

Publication Analysis

Top Keywords

polyelectrolyte brush
24
gold nanoparticles
16
larger nanoparticles
12
solution polyelectrolyte
12
nanoparticles
10
separation device
8
adsorption larger
8
salt concentration
8
larger particles
8
polyelectrolyte
7

Similar Publications