98%
921
2 minutes
20
Porous materials are known for their excellent energy absorption capability and, thus, are widely used in anti-impact applications. However, how the pore shape and size impact the failure mechanism and overall behavior of the porous materials under impact loading is still unclear or limitedly touched. Instead of using homogeneous solids for the porous material model, pores with various shapes and sizes were implanted in a solid to establish the porous materials that have true porous structures, which permits exploration of the local failure mechanism. The results revealed that differently shaped holes have two different dominant deformation modes. And due to their different local stress distributions, they enter the plastic phase earlier and, thus, have higher specific energy absorption. Meanwhile, the model changes from hardening to a quasi-zero stiffness model as the hole size increases. The application of this work can be extended into the field of impact resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509693 | PMC |
http://dx.doi.org/10.3390/ma17205035 | DOI Listing |
J Histotechnol
September 2025
3d.FAB, Université Claude Bernard Lyon 1, CNRS, INSA, CPE-Lyon, Villeurbanne, France.
Histological preparation paraffin embedding is the gold standard method for evaluating tissue structure and composition, whether it is originated from biopsy or engineered . Quite often, deformation and shrinkage occur during the histological preparation, which are difficult to predict and qualify. The present study investigates the morphometric changes in bioprinted hydrogels composed of alginate and gelatine, common tissue engineering materials, focusing on three morphologies: full slabs, porous slabs, and porous cubes.
View Article and Find Full Text PDFNanomicro Lett
September 2025
Department of Mechanical, Aerospace & Biomedical Engineering, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA.
3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices-specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers-which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components.
View Article and Find Full Text PDFDiscov Nano
September 2025
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China.
A cost-effective and large-scale method for synthesizing ZnCoO nanoflowers with surface oxygen vacancies as electrode materials for supercapacitors is presented. The existence of oxygen vacancies on the surface of the ZnCoO nanoflowers has been confirmed through X-ray photoelectron spectroscopy (XPS). The energy bands and density of states (DOS) of ZnCoO are examined using density functional theory, revealing that treatment with NaBH reduces the band gap of ZnCoO while increasing the DOS near the Fermi level compared to pristine ZnCoO.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.
Slippery liquid-infused porous surfaces (or "SLIPS") can prevent bacterial surface fouling, but they do not inherently possess the means to kill bacteria or reduce cell loads in surrounding media. Past reports show that the infused liquids in these materials can be leveraged to load and release antimicrobial agents, but these approaches are generally limited to the use of hydrophobic agents that are soluble in the infused oily phases. Here, we report the design of so-called "proto-SLIPS" that address this limitation and permit the release of highly water-soluble (or oil-insoluble) agents.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Instituto de Cerámica y Vidrio (ICV-CSIC), C/Kelsen 5, 28049 Madrid, Spain.
The oxygen reduction reaction (ORR) is critical to energy conversion technologies and requires efficient catalysts for superior performance. Herein, nitrogen-doped carbide-derived carbon (N-CDC) catalysts are prepared using novel engineered molecular architectures based on polymer-derived ceramic technology. The obtained catalyst materials show a surface N concentration of >5 wt % and a hierarchically porous structure, resulting in a specific surface area of over 2000 m g.
View Article and Find Full Text PDF