98%
921
2 minutes
20
Introduction: Health systems are confronted with not only the growing worldwide childhood obesity epidemic but also associated comorbidities. These subsequently cause variations in distinct metabolic pathways, leading to metabolic dysfunction-associated steatotic liver disease (MASLD). The aim of this evidence map is to systematically evaluate the evidence and to identify research gaps on glucagon-induced amino acid (AA) turnover and its metabolic interaction with MASLD.
Methodology: A systematic literature search was conducted up to April 2023 in three electronic databases. Studies were required to include at least two of the main research areas, glucagon, AA metabolism and MASLD. Two independent reviewers screened titles and abstracts according to prespecified eligibility criteria, as well as full-text articles. Results are summarized in tables stratified by human and animal studies and study population age.
Results: Thirty-four references were ultimately included. The publication years dated back to 1965 showed a great increase from 2012 to 2023. In total, there were 19 animal studies and 15 human studies. Among the human studies, except for two studies in adolescents, all the studies were conducted in adults. In human studies, the methods used to evaluate metabolic changes differed among hyperinsulinemic-euglycemic clamp and oral glucose tolerance tests. Thirteen studies focused on the metabolic effects of MASLD, while only two studies explored the interaction between MASLD, glucagon and AA metabolism in humans. The other 19 studies focused on metabolomics, beta cell function or just one topic of a research area and not on interactions between one another.
Conclusion: Research on the interaction between MASLD, glucagon and AA metabolism in humans is sparse and complete lacking in pediatrics. Furthermore, longitudinal studies with a focus on hyperglucagonemia independent of diabetes but related to MASLD present an unambiguous research gap.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509797 | PMC |
http://dx.doi.org/10.3390/life14101292 | DOI Listing |
J Forensic Sci
September 2025
Netherlands Forensic Institute, Den Haag, Zuid-Holland, the Netherlands.
In routine forensic chemical casework where measurements are performed on reference materials, determination of measurement uncertainty is described in several guidelines. The proposed methods often have the drawback that they are not derived from a statistical framework and may lead to conservative confidence intervals. Furthermore, the formulas involved may vary considerably for different types of reference material.
View Article and Find Full Text PDFPhotochem Photobiol
September 2025
Photobiology Applied to Health (PhotoBioS Lab), University of Vale do Paraíba, São Paulo, Brazil.
Gliomas are malignant tumors of the central nervous system, and one severe variant is called gliosarcoma. Photodynamic therapy (PDT) is a technique that stands out in the oncology area for minimizing side effects for the patient, triggering cell death at the site of irradiation, and can be used concomitantly with conventional treatments. This study aimed to evaluate the interaction of chlorine e6 with the cytoskeleton and mitochondria, as well as morphological changes and the death mechanism triggered after PDT.
View Article and Find Full Text PDFJ Cell Mol Med
September 2025
College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
Berberine (BBR) is an isoquinoline alkaloid with a variety of biological activities, including anti-microbial and anti-tumoral activities. However, the cellular targets of BBR and the roles of BBR in the radiosensitivity of breast cancer cells are not well defined. In this study, we investigated the effects of BBR on the radiosensitivity of BT549 triple-negative breast cancer cells.
View Article and Find Full Text PDFZoonoses Public Health
September 2025
Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.
Introduction: Pigeon paramyxovirus type 1 (PPMV-1) is an antigenic variant of Avian Orthoavulavirus 1 (AOAV-1) (Newcastle disease virus) with a global distribution that causes lethal infections in pigeon and dove species. AOAV-1's infecting humans normally cause mild, self-limiting conjunctivitis, but since 2003, PPMV-1 has been associated with an increased number of severe and lethal respiratory and neurological infections in immunocompromised persons in the Netherlands, the USA, France, China and Australia.
Methods: PPMV-1's isolated from free-living pigeons and doves across South Africa from 2012 to 2024 were sequenced using conventional or next generation technologies.