Mechanisms and Assessment of Genotoxicity of Metallic Engineered Nanomaterials in the Human Environment.

Biomedicines

Center for Environmental/Occupational Risk Analysis & Management, University of South Florida College of Public Health, Tampa, FL 33612, USA.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Engineered nanomaterials (ENMs) have a broad array of applications in agriculture, engineering, manufacturing, and medicine. Decades of toxicology research have demonstrated that ENMs can cause genotoxic effects on bacteria, mammalian cells, and animals. Some metallic ENMs (MENMs), e.g., metal or metal oxide nanoparticles TiO and CuO, induce genotoxicity via direct DNA damage and/or reactive oxygen species-mediated indirect DNA damage. There are various physical features of MENMs that may play an important role in promoting their genotoxicity, for example, size and chemical composition. For a valid genotoxicity assessment of MENMs, general considerations should be given to various factors, including, but not limited to, NM characterization, sample preparation, dosing selection, NM cellular uptake, and metabolic activation. The recommended in vitro genotoxicity assays of MENMs include gene mutation assay, chromosomal aberration assay, and micronucleus assay. However, there are still knowledge gaps in understanding the mechanisms underlying the genotoxicity of MENMs. There are also a variety of challenges in the utilization and interpretation of the genotoxicity assessment assays of MENMs. In this review article, we provide mechanistic insights into the genotoxicity of MENMs in the human environment. We review advances in applying new endpoints, biomarkers, and methods to the genotoxicity assessments of MENMs. The guidance of the United States, the United Kingdom, and the European Union on the genotoxicity assessments of MENMs is also discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504605PMC
http://dx.doi.org/10.3390/biomedicines12102401DOI Listing

Publication Analysis

Top Keywords

genotoxicity
10
menms
9
engineered nanomaterials
8
human environment
8
dna damage
8
genotoxicity assessment
8
assays menms
8
genotoxicity menms
8
genotoxicity assessments
8
assessments menms
8

Similar Publications

l-Ascorbic acid exhibits paradoxical behavior as both antioxidant and pro-oxidant in cancer treatment, with mechanisms and optimal dosing remaining unclear. This in vitro study investigated l-ascorbic acid's effects on healthy lymphocytes and HL-60 leukemia cells using concentrations of 0.5-2 mg/mL for 6 and 24 h.

View Article and Find Full Text PDF

Unveiling Condensed Aromatic Amines as Noteworthy Genotoxic Components in PM Dissolved Organic Matter.

Environ Sci Technol

September 2025

State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.

The potential of PM to cause lung cancer has been well established; however, evidence regarding which specific components are responsible remains limited. We investigated dissolved organic matter (DOM) in PM using high-resolution mass spectrometry (HRMS) and cellular DNA damage assays to elucidate molecular composition and sources of carcinogenic components. Our analysis revealed hundreds of genotoxic compounds, with condensed aromatic amines predominating in number, abundance, and contribution to overall genotoxicity.

View Article and Find Full Text PDF

Differential effects of mercury compounds on mutagenicity, genotoxicity and repair of UV-DNA damage.

Toxicology

September 2025

Brown University, Department of Pathology and Laboratory Medicine, Providence, RI 02903, USA. Electronic address:

Mercury (Hg) is a global contaminant that is present in human diet as methylmercury (MeHg). Recent studies linked MeHg exposure with high risks of skin cancers. It is unknown whether MeHg is directly genotoxic in skin cells or able to enhance mutagenic effects of UV radiation.

View Article and Find Full Text PDF

The red seaweeds, Asparagopsis taxiformis and A. armata inhibit methane production in ruminants, considered to be mediated by bromoform. This review examines the toxicology, metabolism, epidemiology and pharmacology of bromoform.

View Article and Find Full Text PDF

The mutagenic translesion synthesis (TLS) pathway, which is critically dependent on REV1's ability to recruit inserter TLS polymerases and the POLζ extender polymerase, enables cancer cells to bypass DNA lesions while introducing mutations that likely contribute to the development of chemotherapy resistance and secondary malignancies. Targeting this pathway represents a promising therapeutic strategy. Here, we demonstrate that the expression of the C-terminal domain (CTD) of human REV1, a ca.

View Article and Find Full Text PDF