A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Spray-Coated Ultrathin and Porous Films for Physiological Sensing and Force Detection. | LitMetric

Spray-Coated Ultrathin and Porous Films for Physiological Sensing and Force Detection.

ACS Appl Mater Interfaces

Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Material and Technology, MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Epidermal electronics employed on human skin for the long term require good breathability and nonforeign wearing. In this work, we combine phase separation and spray coating to fabricate a porous and ultrathin electrode within minutes as well as micrometer-scale porous pressure sensors. The resulting electrodes show a water vapor transmission rate of 18.4 mg·cm·h, sheet resistance of 5.2 Ω/sq, and thickness below 5 μm. The introduction of the biogel further reduced the electrode-skin impedance, which is lower than that of the commercial gel electrode, indicating that the electrode can have a high degree of conformal contact with the skin. The epidermal electronics prepared by this strategy exhibit an excellent performance in force sensing. Such results strongly prove the efficiency and practicality of the strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c11179DOI Listing

Publication Analysis

Top Keywords

epidermal electronics
8
spray-coated ultrathin
4
ultrathin porous
4
porous films
4
films physiological
4
physiological sensing
4
sensing force
4
force detection
4
detection epidermal
4
electronics employed
4

Similar Publications