A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Power of Multi-Modality Variables in Predicting Parkinson's Disease Progression. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Parkinson's disease (PD) is one of the most common neurodegenerative disorders. The increasing demand for high-accuracy forecasts of disease progression has led to a surge in research employing multi-modality variables for prediction. In this review, we selected articles published from 2016 through June 2024, adhering strictly to our exclusion-inclusion criteria. These articles employed a minimum of two types of variables, including clinical, genetic, biomarker, and neuroimaging modalities. We conducted a comprehensive review and discussion on the application of multi-modality approaches in predicting PD progression. The predictive mechanisms, advantages, and shortcomings of relevant key modalities in predicting PD progression are discussed in the paper. The findings suggest that integrating multiple modalities resulted in more accurate predictions compared to those of fewer modalities in similar conditions. Furthermore, we identified some limitations in the existing field. Future studies that harness advancements in multi-modality variables and machine learning algorithms can mitigate these limitations and enhance predictive accuracy in PD progression.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2024.3482180DOI Listing

Publication Analysis

Top Keywords

multi-modality variables
12
parkinson's disease
8
disease progression
8
predicting progression
8
progression
5
power multi-modality
4
variables
4
variables predicting
4
predicting parkinson's
4
progression parkinson's
4

Similar Publications