Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: The ability to generate natural killer (NK) cells from induced pluripotent stem cells (iPSCs) has given rise to new possibilities for the large-scale production of homogeneous immunotherapeutic cellular products and opened new avenues towards the creation of "off-the-shelf" cancer immunotherapies. However, the differentiation of NK cells from iPSCs remains poorly understood, particularly regarding the ontogenic landscape of iPSC-derived NK (iNK) cells produced and the influence that the differentiation strategy employed may have on the iNK profile.

Methods: To investigate this question, we conducted a comparative analysis of two sets of iNK cells generated from the same iPSC line using two different protocols: (i) a short-term, clinically compatible feeder-free protocol corresponding to primitive hematopoiesis, and (ii) a lymphoid-based protocol representing the definitive hematopoietic step.

Results And Discussion: Our work demonstrated that both protocols are capable of producing functional iNK cells. However, the two sets of resulting iNKs exhibited distinct phenotypes and transcriptomic profiles. The lymphoid-based differentiation approach generated iNKs with a more mature and activated profile, which demonstrated higher cytotoxicity against cancer cell lines compared to iNK cells produced under short-term feeder-free conditions suggesting that the differentiation strategy must be considered when designing iNK cell-based adoptive immunotherapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496199PMC
http://dx.doi.org/10.3389/fimmu.2024.1463736DOI Listing

Publication Analysis

Top Keywords

ink cells
16
comparative analysis
8
cells
8
cells ipscs
8
cells produced
8
differentiation strategy
8
ink
6
differentiation
5
analysis ipsc-derived
4
ipsc-derived cells
4

Similar Publications

Background: Patients with acute myeloid leukemia (AML) are often older, which brings challenges of endurance and persistent efficacy of autologous chimeric antigen receptor (CAR)-T cell therapies. Allogenic CAR-natural killer (NK) cell therapies may offer reduced toxicities and enhanced anti-leukemic potential against AML. CD33 CAR-NK cells have been investigated for AML therapy.

View Article and Find Full Text PDF

Multiscale Engineered Heterogeneous Hydrogel Composites for Digital Light Processing 3D Printing.

ACS Appl Mater Interfaces

September 2025

Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States.

Hydrogel-based bioinks are widely adopted in digital light processing (DLP) 3D printing. Modulating their mechanical properties is especially beneficial in biomedical applications, such as directing cell activity toward tissue regeneration and healing. However, in both monolithic and granular hydrogels, the tunability of mechanical properties is limited to parameters such as cross-linking or packing density.

View Article and Find Full Text PDF

Fibroin: A Multi-Functional Bio-Derived Binder for Lithium-Sulfur Batteries.

ACS Sustain Chem Eng

September 2025

Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.

Traditionally, binders such as poly-(vinylidene fluoride) (PVDF) have been used within lithium-sulfur (Li-S) batteries, but these present environmental and recyclability challenges and have little to no impact on the processes that drive degradation in the cell's chemistry. Ideally, a Li-S battery binder would contribute to the mitigation of the polysulfide shuttle effect and negate the impacts of positive electrode volume expansion while being compatible with aqueous ink preparation and low-energy, low-toxicity recycling processes. In this work, we demonstrate that fibroin, an economical and sustainable biological polymer with an abundance of functional groups, can effectively trap polysulfides while still offering the durability, cyclability, and ease of use offered by the current state-of-the-art binder (PVDF).

View Article and Find Full Text PDF

Notwithstanding the demonstrated benefits of electrical stimulation in enhancing tissue functionality, existing state-of-the-art electrostimulation systems often depend on invasive electrodes or planar designs. This work exploits the versatility of graphene to fabricate biocompatible electrodes for the three-dimensional electrical stimulation of neural stem cells. A conductive green graphene-based ink was formulated and screen-printed as the bottom and top electrodes in a bottom-less standard culture well plate.

View Article and Find Full Text PDF

Induced pluripotent stem cell (iPSC)-derived natural killer (iNK) cells offer a promising platform for off-the-shelf immunotherapy against hematological malignancies. NK cell function is dynamically regulated through education driven by inhibitory receptors, including CD94/NKG2A and killer cell immunoglobulin-like receptors (KIR). However, the acquisition of inhibitory receptors in iNK cells and their role during differentiation and education remains poorly defined.

View Article and Find Full Text PDF