Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The antitumor activity of various gold compounds is a promising field of investigation, attracting researchers seeking potential clinical candidates. To advance this research, they explore the complex mechanisms of action of these compounds. Since the discovery of the strong inhibition of thioredoxin reductase by auranofin, the primary mechanism explored has been the inhibition of this enzyme. This inhibition disrupts the redox balance in cells, promoting oxidative stress and triggering cell death. In this review, we analyzed studies from the past decade that measured cellular ROS increase and examined the coordination structures of gold compounds. We also correlate ROS increase with the inhibition of redox-regulating enzymes, thioredoxin reductase, and glutathione reductase, to elucidate the relationship between these cellular effects and chemical structures. Our data compilation reveals that different structures exhibit varying efficacy: some significantly increase ROS production and inhibit thioredoxin reductase or glutathione reductase, while others elevate ROS levels without affecting these target enzymes, suggesting alternative mechanisms of action. This review consolidates critical evidence, enhancing our understanding of the mechanisms by which these gold complexes act and providing valuable insights for developing new therapeutic strategies against tumor cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202400792DOI Listing

Publication Analysis

Top Keywords

gold compounds
12
ros increase
12
thioredoxin reductase
12
oxidative stress
8
increase inhibition
8
mechanisms action
8
reductase glutathione
8
glutathione reductase
8
ros
5
inhibition
5

Similar Publications

Rationale: Prolapsed hemorrhoids can impair quality of life due to associated symptoms such as pain. While hemorrhoidectomy is considered the gold standard for treating prolapsed hemorrhoids, this procedure inevitably involves complications such as postoperative pain, bleeding, and delayed recovery. Therefore, there is an increasing need for treatment options that are immediate, effective, and minimally invasive, while also taking into account patients' physical and social backgrounds, preferences, and values.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) produced by stem cells are nanoscale carriers of bioactive compounds with regenerative and immunomodulatory capabilities similar to those of their parent cells. Their therapeutic potential outperforms traditional stem cell therapies by lowering hazards such tumorigenicity and allowing for precise delivery. To provide a high-efficiency platform for selectively isolating stem cell EVs from minimal serum quantities while overcoming the constraints of traditional approaches such as ultracentrifugation, we developed an immunoaffinity-based capture system utilizing SiO₂ wafers functionalized with gold nanoparticles (GNPs), polyethylene glycol (HS-PEG-COOH), and stem cell-specific antibodies.

View Article and Find Full Text PDF

Perovskite solar cells (PSCs) are rapidly advancing due to their high power conversion efficiencies (PCEs) and low fabrication costs. However, their commercialization is hindered by lead toxicity and the use of expensive materials, such as Spiro-OMeTAD and gold electrodes. This study presents a comprehensive SCAPS-1D simulation-based analysis of 14 perovskite absorber materials, spanning both Pb-based and lead-free compounds, under a unified device architecture using low-cost, nontoxic components: ZnO as the electron transport material (ETM), PEDOT:PSS + WO as a dual hole transport material, and nickel as the back contact.

View Article and Find Full Text PDF

There is a need to improve the discovery of new drugs for neglected tropical diseases (NTDs), as the lack of financial incentives has slowed their development. Currently, ivermectin and moxidectin are used in the management of onchocerciasis. We present a proof-of-concept study based on computational methods to find anti-infectives that can be repurposed or serve as lead compounds for onchocerciasis.

View Article and Find Full Text PDF

A SERS-active microneedle array for rapid and minimally invasive lactic acid detection.

Anal Chim Acta

November 2025

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China. Electronic address:

Background: During intense exercise, anaerobic metabolism predominantly produces energy in the body, resulting in lactic acid (LA) accumulation, which contributes to muscle fatigue and soreness and may also impair neurological and cardiovascular functions. In endurance sports, the lactate threshold (LT) is a key indicator of an athlete's capacity to clear and utilize LA, directly influencing athletic performance and endurance. Therefore, LA detection is crucial for assessing the physical condition of both athletes and the general population, as well as for optimizing training programs.

View Article and Find Full Text PDF