98%
921
2 minutes
20
In perovskite oxide heterostructures, bulk functional properties coexist with emergent physical phenomena at epitaxial interfaces. Notably, charge transfer at the interface between two insulating oxide layers can lead to the formation of a 2D electron gas (2DEG) with possible applications in, e.g., high-electron-mobility transistors and ferroelectric field-effect transistors. So far, the realization of oxide 2DEGs is, however, largely limited to the interface between the single-crystal substrate and epitaxial film, preventing their deliberate placement inside a larger device architecture. Additionally, the substrate-limited quality of perovskite oxide interfaces hampers room-temperature (RT) 2DEG performance due to notoriously low electron mobility. In this work, the controlled creation of an interfacial 2DEG at the epitaxial interface between perovskite oxides BaSnO and LaInO is demonstrated with enhanced RT electron mobility values up to 119 cm Vs-the highest RT value reported so far for a perovskite oxide 2DEG. Using a combination of state-of-the-art deposition modes during oxide molecular beam epitaxy, this approach opens up another degree of freedom in optimization and in situ control of the interface between two epitaxial oxide layers away from the substrate interface. Thus this approach is expected to apply to the general class of perovskite oxide 2DEG systems and to enable their improved compatibility with novel device concepts and integration across materials platforms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636175 | PMC |
http://dx.doi.org/10.1002/adma.202409076 | DOI Listing |
Nanoscale Adv
August 2025
Department of Chemistry and Industrial Chemistry & INSTM RU, University of Genoa Via Dodecaneso 31 16146 Genova (GE) Italy
Bismuth ferrite (BiFeO), a perovskite oxide with both ferroelectric and antiferromagnetic properties, has emerged as a promising material for environmental cleanup due to its piezo-photocatalytic activity. The material's ability to degrade organic pollutants, such as azo dyes, under both light irradiation and mechanical stress (ultrasonic waves) offers a dual-action mechanism for efficient wastewater treatment. In this work, we explore the synthesis of BiFeO nanoparticles a simple sol-gel method, followed by characterization of their structural, magnetic, and photocatalytic properties.
View Article and Find Full Text PDFAtomic layer deposition (ALD) enables an excellent surface coverage and uniformity in the preparation of large-area metal-oxide thin films. In particular, ALD-processed SnO has demonstrated great potential as an electron transport layer in flexible perovskite solar cells (PSCs) and tandem modules. However, the poor electrical conductivities and surface wettabilities of amorphous SnO remain critical challenges for commercialization.
View Article and Find Full Text PDFThe functionalization of thin, flexible glass with piezoelectric oxides is a pathway toward transparent electromechanical devices. The crystallization of lead zirconate titanate thin films on thick, rigid glass is previously demonstrated using flash lamp annealing to selectively anneal the films, without damaging the substrates. In this work, a 2-step process suitable for Schott AF 32 eco glass and Corning Willow glass is developed, both 100 μm thick, the latter of which is compatible with roll-to-roll processes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Advanced Photovoltaics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
NiO is a p-type semiconductor widely used as a hole transport material in perovskite solar cells (PSCs), yet the impact of fabrication methods on its interfacial properties and the underlying mechanisms remains unclear. This study investigates how the fabrication process─nanoparticle precursor (NP NiO) and sputtering deposition (SP NiO)─and interfacial space charge effects influence charge transport and device performance in NiO/perovskite systems. SP NiO exhibits a higher Ni/Ni ratio and greater conductivity but induces significant hole depletion and band bending at the interface, leading to reduced open-circuit voltage and efficiency.
View Article and Find Full Text PDFAdv Mater
September 2025
Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea.
Spiro-OMeTAD has remained the benchmark hole-transporting material (HTM) in state-of-the-art perovskite solar cells, owing to its favorable energy level alignment and excellent interfacial compatibility. However, its practical implementation is critically hindered by the intrinsic instabilities introduced by conventional dopants such as lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and 4-tert-butylpyridine (tBP). While these dopants enhance electrical conductivity, they concurrently initiate multiple degradation pathways-including ionic migration, radical deactivation, and moisture/thermal-induced morphological failure-thereby compromising device longevity and reproducibility.
View Article and Find Full Text PDF