98%
921
2 minutes
20
The use of dissolution imaging in analysing the behaviourof hydrophilic matrices and various types of excipients is examined in this study.The main aim was to investigate how different ratios of excipients with different solubility properties, such as lactose, microcrystalline cellulose, and dicalcium phosphate impact on the swelling properties and propranolol hydrochloride (PPN) release characteristics of polyethylene oxide matrix compacts. The surface properties of the compacts were investigated using a focus variation microscope after which dissolution studies were conducted to determine compact swelling and drug release properties. Smr2, a surface parameter representing the percentage of deeper valley structures on the surface, was used to calculate the proportion of the compact surface available for retaining lubrication (dissolution media in this case). Smr2 values of 83 and 84 were measured for the 1:1 and 1:3 PEO lactose compacts, respectively. This parameter utilised in this experiment gives an indication of the compact surface available for the initial hydration process and suggests a higher rate of hydration for the 1:1 and 1:3 PEO lactose compacts. The swelling studies revealed that a higher PEO ratio (3:1) resulted in more extensive gel layer formation as compared to the 1:3 compacts. All PEO:excipient compacts exhibited faster drug release than the compacts comprising PEO as the sole excipient. The quantity of PEO present was thus crucial in influencing the capacity of the matrix to control the release of PPN. This study underscores the potential for modifying drug release by altering the quantity of the matrix gel-former (PEO in this case) as well as the type or ratio of excipient used. The study also highlights the novelty of using UV dissolution imaging to image and quantify swelling and drug dissolution processes as well as providing qualitative observations such as channel formation which can support formulation optimisation and mechanistic understanding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2024.124850 | DOI Listing |
Anal Sens
January 2025
Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 United States.
At present, two competing hyperpolarization (HP) techniques, dissolution dynamic nuclear polarization (DNP) and parahydrogen (para-H) induced polarization (PHIP), can generate sufficiently high liquid state C signal enhancement for in vivo studies. PHIP utilizes the singlet spin state of para-H to create non-equilibrium spin populations. In hydrogenative PHIP, para-H is irreversibly added to unsaturated precursors, typically in the presence of a homogeneous catalyst.
View Article and Find Full Text PDFAm J Case Rep
September 2025
Department of General Surgery, Second Affiliateda Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
BACKGROUND Phytobezoar-induced small bowel obstruction presents significant management challenges, particularly in patients who either decline surgery or have contraindications. These concretions, predominantly composed of persimmon tannins, account for 0.4-4.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
Department of Metal Forming, Welding and Metrology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
This study investigates the influence of temperature measurement accuracy on tool failure mechanisms in industrial hot forging processes. Challenges related to extreme operational conditions, including high temperatures, limited access to measurement surfaces, and optical interferences, significantly hinder reliable data acquisition. Thermal imaging, pyrometry, thermocouples, and finite element modeling were employed to characterize temperature distributions in forging tools and billets.
View Article and Find Full Text PDFLab Chip
August 2025
Department of Energy Science and Engineering, Stanford University, Stanford, USA.
Acid dissolution of carbonate formations is critical to the energy transition and relevant to many engineering applications. The dynamics of the dissolution reaction are complex, strongly depend both on the flow properties and sample mineralogy and are further complicated by the production of carbon dioxide gas bubbles from the reactive surface, which renders the system multiphase. Quantifying the impact of multiphase flow conditions on effective reaction rates of carbonate dissolution has challenged experimental methods focused on core-based characterization techniques.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2025
Department of Engineering Science, University of Oxford, Oxford, Oxfordshire OX1 3PJ, U.K.
Enamel is a cellular, nonregenerative, highly mineralized tissue essential for the mechanical durability and wear resistance of human teeth. Combating its degradation necessitates effective remineralization strategies, with hydroxyapatite (HAp) playing a central role in both natural and synthetic enamel restoration. Fluoride incorporation enhances HAp stability, forming fluoridated hydroxyapatite (FHAp), which is widely used to prevent or resist dental caries and improve remineralization.
View Article and Find Full Text PDF