Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: Artificial intelligence (AI) is thought to improve lesion detection. However, a lack of knowledge about human performance prevents a comparative evaluation of AI and an accurate assessment of its impact on clinical decision-making. The objective of this work is to quantitatively evaluate the ability of humans to detect focal cortical dysplasia (FCD), compare it to state-of-the-art AI, and determine how it may aid diagnostics.

Materials And Methods: We prospectively recorded the performance of readers in detecting FCDs using single points and 3-dimensional bounding boxes. We acquired predictions of 3 AI models for the same dataset and compared these to readers. Finally, we analyzed pairwise combinations of readers and models.

Results: Twenty-eight readers, including 20 nonexpert and 5 expert physicians, reviewed 180 cases: 146 subjects with FCD (median age: 25, interquartile range: 18) and 34 healthy control subjects (median age: 43, interquartile range: 19). Nonexpert readers detected 47% (95% confidence interval [CI]: 46, 49) of FCDs, whereas experts detected 68% (95% CI: 65, 71). The 3 AI models detected 32%, 51%, and 72% of FCDs, respectively. The latter, however, also predicted more than 13 false-positive clusters per subject on average. Human performance was improved in the presence of a transmantle sign ( P < 0.001) and cortical thickening ( P < 0.001). In contrast, AI models were sensitive to abnormal gyration ( P < 0.01) or gray-white matter blurring ( P < 0.01). Compared with single experts, expert-expert pairs detected 13% (95% CI: 9, 18) more FCDs ( P < 0.001). All AI models increased expert detection rates by up to 19% (95% CI: 15, 24) ( P < 0.001). Nonexpert+AI pairs could still outperform single experts by up to 13% (95% CI: 10, 17).

Conclusions: This study pioneers the comparative evaluation of humans and AI for FCD lesion detection. It shows that AI and human predictions differ, especially for certain MRI features of FCD, and, thus, how AI may complement the diagnostic workup.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RLI.0000000000001125DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
focal cortical
8
cortical dysplasia
8
lesion detection
8
human performance
8
comparative evaluation
8
median age
8
age interquartile
8
interquartile range
8
single experts
8

Similar Publications

Objectives: To evaluate the performance of artificial intelligence (AI)-based models in predicting elevated neonatal insulin levels through fetal hepatic echotexture analysis.

Methods: This diagnostic accuracy study analyzed ultrasound images of fetal livers from pregnancies between 37 and 42 weeks, including cases with and without gestational diabetes mellitus (GDM). Images were stored in Digital Imaging and Communications in Medicine (DICOM) format, annotated by experts, and converted to segmented masks after quality checks.

View Article and Find Full Text PDF

Artificial intelligence (AI) is increasingly applied in nutrition science to support clinical decision-making, prevent diet-related diseases such as obesity and type 2 diabetes, and improve nutrition care in both preventive and therapeutic settings. By analyzing diverse datasets, AI systems can support highly individualized nutritional guidance. We focus on machine learning applications and image recognition tools for dietary assessment and meal planning, highlighting their potential to enhance patient engagement and adherence through mobile apps and real-time feedback.

View Article and Find Full Text PDF

This study investigates how scientists, educators, and ethics committee members in Türkiye perceive the opportunities and risks posed by generative AI and the ethical implications for science and education. This study uses a 22-question survey developed by the EOSC-Future and RDA AIDV Working Group. The responses were gathered from 62 universities across 208 universities in Türkiye, with a completion rate of 98.

View Article and Find Full Text PDF

Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.

View Article and Find Full Text PDF