Research progresses on the effects of light, temperature and water conditions on primary and secondary growth of trees.

Ying Yong Sheng Tai Xue Bao

CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tree growth includes primary growth and secondary growth. The growth activity and dormancy cycle of trees can affect forest productivity and carbon sequestration capacity. Therefore, it is of great significance to examine the effects of environmental conditions (., photoperiod, temperature and water) on tree growth for understanding the responses of trees to climate change and predicting forest productivity and carbon sequestration capacity under the background of global climate change. We reviewed the effects of photoperiod, temperature and water conditions on the primary and secondary growth of trees, and revealed the physiological mechanisms underlying their impacts on the synchronization or asynchronization between primary and secondary growth of trees. The shortcomings of the existing research were pointed out. For example, less attention had been paid to the enrionmental response and adaptation of root growth, as well as the physiological mechanism of the effect of light, temperature and water on tree growth. Research on the growth of underground roots should be strengthened in the future, and more attention should be paid to the physiological changes in the process of tree growth affected by environmental factors. Furthermore, the source and sink limitation theory and the process-based prediction model should be improved, aiming to provide a scientific basis for predicting forest productivity and carbon sequestration capacity and putting forward scientific policies of forest management.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.202409.008DOI Listing

Publication Analysis

Top Keywords

temperature water
16
secondary growth
16
tree growth
16
primary secondary
12
growth
12
growth trees
12
forest productivity
12
productivity carbon
12
carbon sequestration
12
sequestration capacity
12

Similar Publications

Developing artificial hosts with temperature-driven conformational switching behaviors facilitates our understanding of the temperature-dependent allostery and adaptation mechanisms in natural recognition systems. Herein, we report the design and synthesis of three pairs of water-soluble, enantiomeric binaphthalene-based tetraimidazolium macrocycles (SS/RR-1•4Cl- - SS/RR-3•4Cl-) as artificial hosts for exploring sequence-selective recognition of dinucleotides in aqueous media. Owing to the reversible rotational conformation of axially chiral binaphthyl units, SS-1•4Cl- demonstrates the conformational switching, converting from cis-conformation (SS-1) to trans-conformation (SS-1) by increasing temperature, thereby causing the recognition cavity to transition from a closed to an open state.

View Article and Find Full Text PDF

Secondary metabolites are important bioactive compounds for diet and medicine. This study optimizes the extraction of hydroethanolic herbal extracts using an EDGE (Energized Dispersive Guided Extraction) system, evaluates their antioxidant capacity, and analyzes correlations among antioxidant activity, total phenolic content, and individual compounds. A Doehlert matrix design was used to optimize extraction, having temperature and time as independent variables, and total phenolic content (mg GAE/g) as the response, quantified via the Folin-Ciocalteu method.

View Article and Find Full Text PDF

Pathogenic characteristics of Causing Black Root Rot of Carrot.

Plant Dis

September 2025

Institute of Plant Protection, University of Belgrade-Faculty of Agriculture, Department of Phytopathology, Nemanjina 6, Belgrade , Serbia, 11080.

The pathogenic soilborne and postharvest fungus , as newly reported pathogen in Serbia, caused significant disease symptoms on carrot roots and seedlings in inoculation assays. In October 2023, machine-washed and cold-stored carrot roots showed symptoms of black rot of patches and abundant sporulation. The influence of the postharvest treatment of machine washing was confirmed by additional sampling at the production site.

View Article and Find Full Text PDF

Green synthesis of silver nanoparticles using Ocimum sanctum for efficient Congo red dye removal: a response surface methodology approach.

Environ Monit Assess

September 2025

Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, Tamil Nadu, 641021, India.

Synthetic dyes, such as Congo red (CR), pose serious threats to human health and aquatic ecosystems because of their carcinogenicity and resistance to degradation, necessitating the development of efficient and eco-friendly remediation strategies. In this study, silver nanoparticles (AgNPs) were synthesized via a green method using Ocimum sanctum (holy basil) leaf extract and applied for CR dye removal from aqueous solutions. The adsorption process was optimized using response surface methodology (RSM) based on Box-Behnken design (BBD), evaluating the influence of key parameters including pH, AgNP dosage, initial dye concentration, contact time, and temperature.

View Article and Find Full Text PDF

Extreme event attribution assesses how climate change affected climate extremes, but typically focuses on single events. Furthermore, these attributions rarely quantify the extent to which anthropogenic actors have contributed to these events. Here we show that climate change made 213 historical heatwaves reported over 2000-2023 more likely and more intense, to which each of the 180 carbon majors (fossil fuel and cement producers) substantially contributed.

View Article and Find Full Text PDF