98%
921
2 minutes
20
With the increasing prevalence of antimicrobial-resistant bacterial infections, there is interest in using bacteriophages (phages) to treat such infections. However, the factors that govern bacteriophage pharmacokinetics in vivo remain poorly understood. Here, we have examined the contribution of neutrophils, the most abundant phagocytes in the body, to the pharmacokinetics of i.v. administered bacteriophage in uninfected mice. A single dose of LPS-5, a bacteriophage recently used in human clinical trials to treat drug-resistant Pseudomonas aeruginosa, was administered i.v. to both immunocompetent BALB/c and neutropenic CD1 mice. Phage concentrations were assessed in peripheral blood and spleen at 0.25, 1, 2, 4, 8, 12, and 24 hours after administration by plaque assay and qPCR. We observed that the phage clearance was only minimally affected by neutropenia. Indeed, the half-lives of phages in blood in BALB/c and CD1 mice were 3.45 and 3.66 hours, respectively. These data suggest that neutrophil-mediated phagocytosis is not a major determinant of phage clearance. Conversely, we observed a substantial discrepancy in circulating phage levels over time when measured by qPCR versus plaque assay, suggesting that significant inactivation of circulating phages occurs over time. These data indicate that alternative factors, but not neutrophils, inactivate i.v. administered phages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530120 | PMC |
http://dx.doi.org/10.1172/jci.insight.181309 | DOI Listing |
Trends Immunol
September 2025
Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria 3010, Australia. Electronic address:
Neutrophil extracellular trap (NET) formation, or NETosis, is a key innate immune response that contributes to cardiovascular diseases, including vascular inflammation, atherosclerosis, and thrombosis. In the cardiovascular system, neutrophils encounter mechanical cues such as shear stress, matrix stiffness, and cyclic stretch that influence their activation and NET release. This review examines emerging evidence linking altered mechanotransduction to dysregulated NETosis in vascular aging and cardiovascular pathology.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China.
Mitigating myocardial ischemia-reperfusion (IR) injury is essential for enhancing the success of heart transplantation (HT) and improving patient outcomes. During HT, infiltrating neutrophils are influenced and regulated by various other cell types, contributing to myocardial IR injury through the excessive release of neutrophil extracellular traps (NETs). Nonetheless, the precise mechanisms underlying the interactions between neutrophils and other non-cardiomyocytes remain largely unexplored.
View Article and Find Full Text PDFJ Dairy Sci
September 2025
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China. Electronic address:
Subclinical ketosis (SCK) in periparturient cows is associated with gut microbiota dysbiosis and energy metabolism disorders. Although in vitro studies show that free fatty acids (FFA) and BHB impair polymorphonuclear neutrophil (PMN) functions-potentially causing secondary infections-limited in vivo evidence exists. Astragalus polysaccharides (APS) modulate metabolism, immunity, and gut microbiota, but their effects on PMN functions and gut microbiota in SCK cows remain unclear.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Hebei Medical University Postdoctoral Research Station in Basic Medicine, No. 361 Zhongshan Dong Road, 050017 Shijiazhuang, China; Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical Univ
Environmental stress contributes to the development of depression through neuro-immune interactions, yet the underlying molecular mechanisms and associated clinical diagnostic biomarkers remain unclear. We established a psychosocial stress mouse model and systematically investigated the immune dysregulation induced by stress through integrated analysis of blood cell profiles, leukocyte transcriptomics, protein-protein interaction networks, single-cell RNA sequencing, and targeted pharmacological intervention. Additionally, we constructed and validated a depression predictive model using multiparametric peripheral blood data and machine learning, and assessed feature importance using the SHapley Additive exPlanations (SHAP) analysis.
View Article and Find Full Text PDFEndometriosis is a chronic gynecological disease affecting 1 in 10 reproductive-aged women and is characterized by the ectopic presence of endometrial tissue outside the uterus. The leading hypothesis for disease etiology is via the reflux of menstrual effluent (ME) into the peritoneal cavity. ME is a complex mixture of viable endometrial tissue, proteins, and immune cells which serve specialized functions during menstruation to support and repair the endometrium.
View Article and Find Full Text PDF