98%
921
2 minutes
20
With the rapid development of autonomous driving technology, path planning has gained significant attention as it holds great potential for improving safety. The Rapidly-exploring Random Tree star(RRT*) algorithm has attracted much attention because of its good adaptability and expansibility. However, how solving problems in the RRT* algorithm such as slow convergence time, significant search range randomness, and unpredictability is a challenge. Therefore, an RRT* enhancement algorithm combining variable probability goal-bias strategy and artificial potential field(APF) method(Improved A-RRT*) is proposed in this paper. Firstly, the variable probability goal-bias strategy is introduced in the sampling process to make random tree expand towards the target direction and improve the directional searchability of the random tree. Secondly, the potential field function in APF is improved to prevent falling into local optimum problems during path generation. Thirdly, improved APF is combined with RRT*, the target generates a gravitational field on random tree, and the obstacle generates a repulsive force on it, leading random tree to grow toward the target region. Finally, the proposed algorithm is compared with RRT* algorithm and its derivative algorithm. The experimental results demonstrate that the proposed algorithm has obvious optimizations in convergence speed and path quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494065 | PMC |
http://dx.doi.org/10.1038/s41598-024-76299-9 | DOI Listing |
J Safety Res
September 2025
Department of Civil & Environmental Engineering, The University of Tennessee, Knoxville, United States. Electronic address:
Introduction: Pedestrian safety is a growing concern in the United States transportation sector, with around 7,500 pedestrian crash fatalities reported in the United States in recent years. Pedestrians are at an even higher risk of crashes at night due to limited visibility and alcohol impairment of the drivers or pedestrians. The U.
View Article and Find Full Text PDFJ Eval Clin Pract
September 2025
Pediatric Allergy and Immunology Department, Akdeniz University Hospital, Akdeniz University, Antalya, Türkiye.
Aims And Objectives: To evaluate the efficacy of YoungAsthma, a nurse-led, web-based mHealth intervention on asthma control and self-efficacy among adolescents with asthma utilizing decision tree analysis.
Background: Asthma is a prevalent chronic condition in pediatric populations, necessitating sustained management for optimal disease control.
Design: A randomized controlled clinical trial.
Front Rehabil Sci
August 2025
Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.
Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.
Bioinform Adv
August 2025
Department of CSE, BUET, Dhaka 1000, Bangladesh.
Motivation: Heavy usage of synthetic nitrogen fertilizers to satisfy the increasing demands for food has led to severe environmental impacts like decreasing crop yields and eutrophication. One promising alternative is using nitrogen-fixing microorganisms as biofertilizers, which use the nitrogenase enzyme. This could also be achieved by expressing a functional nitrogenase enzyme in the cells of the cereal crops.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Institute of Earth Sciences, Southern Federal University, Rostov-On-Don, Russia.
Sustainable urban development requires actionable insights into the thermal consequences of land transformation. This study examines the impact of land use and land cover (LULC) changes on land surface temperature (LST) in Ho Chi Minh city, Vietnam, between 1998 and 2024. Using Google Earth Engine (GEE), three machine learning algorithms-random forest (RF), support vector machine (SVM), and classification and regression tree (CART)-were applied for LULC classification.
View Article and Find Full Text PDF