Silk fibroin-based bioelectronic devices for high-sensitivity, stable, and prolonged in vivo recording.

Biosens Bioelectron

State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Silk fibroin, recognized for its biocompatibility and modifiable properties, has significant potential in bioelectronics. Traditional silk bioelectronic devices, however, face rapid functional losses in aqueous or in vivo environments due to high water absorption of silk fibroin, which leads to expansion, structural damage, and conductive failure. In this study, we developed a novel approach by creating oriented crystallization (OC) silk fibroin through physical modification of the silk protein. This advancement enabled the fabrication of electronic interfaces for chronic biopotential recording. A pre-stretching treatment of the silk membrane allowed for tunable molecular orientation and crystallization, markedly enhancing its aqueous stability, biocompatibility, and electronic shielding capabilities. The OC devices demonstrated robust performance in sensitive detection and motion tracking of cutaneous electrical signals, long-term (over seven days) electromyographic signal acquisition in live mice with high signal-to-noise ratio (SNR >20), and accurate detection of high-frequency oscillations (HFO) in epileptic models (200-500 Hz). This work not only improves the structural and functional integrity of silk fibroin but also extends its application in durable bioelectronics and interfaces suited for long-term physiological environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2024.116853DOI Listing

Publication Analysis

Top Keywords

silk fibroin
16
silk
8
bioelectronic devices
8
silk fibroin-based
4
fibroin-based bioelectronic
4
devices high-sensitivity
4
high-sensitivity stable
4
stable prolonged
4
prolonged vivo
4
vivo recording
4

Similar Publications

Directional Biomimetic Scaffold-Mediated Cell Migration and Pathological Microenvironment Regulation Accelerate Diabetic Bone Defect Repair.

ACS Nano

September 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev

Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.

View Article and Find Full Text PDF

Anthocyanins, natural antioxidants found in L. flowers, exhibit instability when exposed to high temperatures. Therefore, to heat-protect the anthocyanins, this investigation produced extract-loaded polymeric (polyethylenimine (PEI) or poly-(vinyl alcohol) (PVA)) functionalized silk fibroin nanoparticles using a green/sustainable process.

View Article and Find Full Text PDF

In situ articular cartilage (AC) regeneration is a meticulously coordinated process. Microfracture has been the most extensive clinical approach in AC repair, but it faces challenges such as matrix degradation, generation, and remodeling within a local inflammatory microenvironment. So far, it remains a challenge to establish a multistage regulatory framework for coordinating these cellular events, particularly the immune response and chondrocyte proliferation in microfracture-mediated AC repair microenvironments, which is crucial for promoting AC regeneration quality.

View Article and Find Full Text PDF

Famotidine (FMD) is an H₂-receptor antagonist with limited oral bioavailability and a short plasma half-life (2.5-4 h). Silk fibroin-chitosan nanoparticles (FBN-CS-NPs) represent a novel nanocarrier approach for treating peptic ulcers, combining biocompatibility, mucoadhesiveness, and pH-sensitive release.

View Article and Find Full Text PDF

Heparin-loaded silk fibroin microparticles/bacterial nanocellulose (Hep@SFMPs/BNC) conduits for application as small-caliber artificial blood vessels.

Carbohydr Polym

November 2025

State Key Laboratory of Advanced Fiber Materials (Donghua University), Shanghai 201620, China; College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Med

Small-caliber artificial blood vessels are highly demanded and face challenges, including thrombosis and intimal hyperplasia. The excellent properties of bacterial nanocellulose (BNC) make it an excellent material for preparing artificial blood vessels. Heparin (Hep)-loaded silk fibroin microparticles (SFMPs) were synthesized in situ within the conduit wall via liquid pressure injection and phase separation, aiming to improve BNC's anticoagulant properties.

View Article and Find Full Text PDF