98%
921
2 minutes
20
Punicic acid (PuA), an unusual conjugated linolenic acid found in pomegranate, offers diverse health benefits and has potential applications in the food industry. Due to the limited availability of PuA from natural plant sources, there is growing interest in producing it through microbial fermentation. In this study, the yeast , which is classified as "generally recognized as safe", was engineered to produce PuA using a results-driven approach. Genes potentially involved in PuA synthesis were integrated directly into the yeast genome, targeting Ty retrotransposon sites. Screening of the yeast transformants, followed by optimization of culture conditions, resulted in the production of 26.7% PuA within the yeast's total fatty acids. Further analysis revealed that the strain's triacylglycerol fraction contained over 22% PuA. By incorporating this health-promoting lipid into the nutritional profile of , the engineered strain could serve as a sustainable source of yeast biomass with enhanced nutritional value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.4c08252 | DOI Listing |
J Agric Food Chem
September 2025
Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Life Science and Health Engineering, Hubei University of Technology, Wuhan 430068, P. R. China.
Through evolutionary engineering strategies, scientists have successfully cultivated multiple strains of with enhanced tolerance, demonstrating significant potential in improving resistance. In this study, was continuously cultured for 80 days in a medium containing lignocellulosic inhibitors (furfural, acetic acid, and vanillin). The evolved strain, , exhibited 12 h reduction in lag phase under multiple stress conditions and 17% increase in the ethanol conversion rate.
View Article and Find Full Text PDFFront Microbiol
August 2025
Engineering Research Center of Inner Mongolia for Green Manufacturing in Bio-Fermentation Industry, Hohhot, China.
Corn husk, a predominant byproduct derived from intensive corn processing, is characterized by high cellulose content, low protein content, and poor palatability, which makes it difficult to be fully utilized by ruminants. This investigation employed corn husk as substrate for microbial protein production through a two-stage open solid-state fermentation (SSF) system using and yeast strains. The fermentation process yielded a 65.
View Article and Find Full Text PDFOpen Biol
September 2025
Instituto de Acuicultura de Torre de la Sal (IATS), CSIC, Castellón, Spain.
The sustainability of aquaculture is challenged by limited fishmeal and fish oil supplies, key sources of long-chain polyunsaturated fatty acids (LC-PUFA) such as eicosapentaenoic acid (EPA, 20:5 n-3), docosahexaenoic acid (DHA, 22:6 n-3) and arachidonic acid (ARA, 20:4 n-6), essential for fish health and product quality. Polychaetes represent a promising alternative. While marine polychaetes show complete LC-PUFA biosynthetic pathways involving elongases (Elovl), front-end desaturases (Fed), and methyl-end desaturases (ω des), freshwater species remain poorly studied.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
September 2025
Microbiology Area, Bioscience Department, Facultad de Química, Universidad de la República (UdelaR), Gral. Flores 2124, Montevideo, Uruguay.
The global oversupply of crude glycerol, a byproduct of biodiesel production, needs innovative strategies for its sustainable utilization. In this study we isolated and characterized oleaginous yeast strains from fruit surfaces in the Brazilian Cerrado biome, a biodiversity hotspot, to assess their potential for converting crude glycerol into microbial lipids suitable for biodiesel. From 150 fruits, 45 yeast strains were isolated, with six identified as oleaginous (intracellular lipids > 20% dry biomass).
View Article and Find Full Text PDFBioresour Technol
August 2025
Aalborg University, Department of Chemistry and Bioscience, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark.
This study explores the potential of probiotic bacteria-yeast co-cultivation to enhance microbial growth and postbiotic production using halophyte-based media. Initial screening of six yeast strains revealed variations in nutrient utilization, with Saccharomyces cerevisiae, Kluyveromyces marxianus DSM 7238, and Cyberlindnera jadinii DSM 2361, demonstrating superior carbon source consumption and biomass production. Co-cultivation with Bacillus coagulans ATCC 7050 enhanced overall product formation, whereas Lactiplantibacillus plantarum DSM 13272 had undesirable effects on product formation.
View Article and Find Full Text PDF