Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Patients often struggle with determining which outpatient specialist to consult based on their symptoms. Natural language processing models in health care offer the potential to assist patients in making these decisions before visiting a hospital.
Objective: This study aimed to evaluate the performance of ChatGPT in recommending medical specialties for medical questions.
Methods: We used a dataset of 31,482 medical questions, each answered by doctors and labeled with the appropriate medical specialty from the health consultation board of NAVER (NAVER Corp), a major Korean portal. This dataset includes 27 distinct medical specialty labels. We compared the performance of the fine-tuned Korean Medical bidirectional encoder representations from transformers (KM-BERT) and ChatGPT models by analyzing their ability to accurately recommend medical specialties. We categorized responses from ChatGPT into those matching the 27 predefined specialties and those that did not. Both models were evaluated using performance metrics of accuracy, precision, recall, and F-score.
Results: ChatGPT demonstrated an answer avoidance rate of 6.2% but provided accurate medical specialty recommendations with explanations that elucidated the underlying pathophysiology of the patient's symptoms. It achieved an accuracy of 0.939, precision of 0.219, recall of 0.168, and an F-score of 0.134. In contrast, the KM-BERT model, fine-tuned for the same task, outperformed ChatGPT with an accuracy of 0.977, precision of 0.570, recall of 0.652, and an F-score of 0.587.
Conclusions: Although ChatGPT did not surpass the fine-tuned KM-BERT model in recommending the correct medical specialties, it showcased notable advantages as a conversational artificial intelligence model. By providing detailed, contextually appropriate explanations, ChatGPT has the potential to significantly enhance patient comprehension of medical information, thereby improving the medical referral process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530716 | PMC |
http://dx.doi.org/10.2196/47814 | DOI Listing |