Acoustography by Beam Engineering and Acoustic Control Node: BEACON.

Adv Sci (Weinh)

Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, 27708, USA.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Acoustic manipulation has emerged as a valuable tool for precision controls and dynamic programming of cells and particles. However, conventional acoustic manipulation approaches lack the finesse necessary to form intricate, configurable, continuous, and 3D patterning of particles. Here, this study reports acoustography by Beam Engineering and Acoustic Control Node (BEACON), which delivers intricate, configurable patterns by guiding particles along custom paths with independent phase modulation. Leveraging analytical methods of orbital angular momentum beam via iterative Wirtinger hologram algorithm, this study accomplish acoustography by facilitating orbital angular momentum traps, enabling continuous 2D and 3D acoustic manipulation of microparticles in any desired geometry, with phase modulation independent of intensity. Utilizing on-chip acoustography, the BEACON platform markedly increases the space-bandwidth product to 31 000 while attaining an enhanced resolution with a pixel size of ≈25 µm, surpassing the typical resolution of over 200 µm in previous holographic particle manipulation methods. The capabilities of BEACON are demonstrated in creating intricate triple helical tracing structures using microdroplets (20 µm in diameter) and those carrying DNA to validate the effectiveness of the acoustography and phase control methods. This study offers new particle manipulation opportunities, paving the way for next-generation biomedical systems and the future of contact-free precision manufacturing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633508PMC
http://dx.doi.org/10.1002/advs.202403742DOI Listing

Publication Analysis

Top Keywords

acoustic manipulation
12
acoustography beam
8
beam engineering
8
engineering acoustic
8
acoustic control
8
control node
8
node beacon
8
intricate configurable
8
phase modulation
8
orbital angular
8

Similar Publications

Acoustic tweezers leverage acoustic radiation forces for noncontact manipulation. One of the core bottlenecks in multidimensional manipulation is the lack of a systematic design methodology, which prevents the generation of an acoustic field that simultaneously meets the collaborative control requirements of multi-degree-of-freedom forces and torques, making it difficult to achieve precise control under conditions of stable suspension, high-frequency rotation, and complex spatial constraints. To address this challenge, we develop an end-to-end inverse design methodology for acoustic tweezers based on coding metasurfaces, establishing a dual-objective, dual-scale optimization paradigm.

View Article and Find Full Text PDF

Objective: Transcranial ultrasound (US) stimulation (TUS) has emerged as a promising technique for minimally invasive, localized, deep brain stimulation. However, indirect auditory effects during neuromodulation require careful consideration, particularly in experiments with rodents. One method to prevent auditory responses involves applying tapered envelopes to US bursts.

View Article and Find Full Text PDF

Droplet splitting plays an important role in droplet microfluidics by providing precise control over droplet size, which is essential for applications such as single-cell analysis, biochemical reactions, and the fabrication of micro- and nanosized material. Conventional methods of droplet splitting using obstructions or junctions in the microchannel have a clear limitation that the split ratio for a particular device remains fixed, while existing active splitting methods are constrained by low flow rates, the need for complex systems, or limitations to specific droplet types. In this study, we demonstrate that droplet splitting can be achieved simply using a one-dimensional standing-wave field excited within a microchannel.

View Article and Find Full Text PDF

Animal display behaviors, such as advertisement songs, are flashy and attention grabbing by necessity. In order to balance the costs and benefits of such signals, individuals must be able to assess both their own energetic state and their social environment. In this study, we investigated the role of leptin, a hormonal signal of high energy balance, in regulating the vocal advertisement display of Alston's singing mouse ( ).

View Article and Find Full Text PDF

When compared to nature sounds, exposure to mechanical sounds evokes higher levels of perceptual and physiological arousal, prompting the recruitment of attentional and physiological resources to elicit adaptive responses. However, it is unclear whether these attributes are solely related to the sound intensity of mechanical sounds, since in most real-world scenarios, mechanical sounds are present at high intensities, or if other acoustic or semantic factors are also at play. We measured the Skin Conductance Response (SCR), reflecting sympathetic nervous system (SNS) activity as well as the pleasantness and eventfulness of the soundscape across two passive and active listening tasks in (N = 25; 14 females, 11 males) healthy subjects.

View Article and Find Full Text PDF