98%
921
2 minutes
20
Prussian blue and its analogues (PB/PBAs) are promising sodium-ion battery cathode materials due to their easy synthesis and excellent discharge capacity. However, their low structural stability poses a challenge. One critical factor affecting stability is the charge cutoff voltage. Increasing this voltage can enhance lithium-ion battery capacity but may reduce cycle retention due to intensified electrode-electrolyte interface reactions. This study investigates whether this phenomenon also applies to sodium-ion batteries and proposes an optimal voltage to improve both the capacity and stability. By cycling between 3.8 and 4.2 V, the charge/discharge profiles and redox reaction intensity were analyzed. The correlation between structural stability and charge cutoff voltage was re-evaluated based on these findings. An optimal charge cutoff voltage of 4.1 V was identified, creating an additional plateau during initial charging and altering Na ion positioning to enhance capacity. Enhanced mobility of ions and electrons was observed through a stable solid-electrolyte interphase (SEI) formation. Ex situ X-ray diffraction (XRD) confirmed reversible phase transitions and excellent structural stability. This study underscores the strategic use of charge cutoff voltage to enhance both discharge capacity and structural stability, offering insights for advancing PB/PBA cathode materials with improved stability and capacity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c14973 | DOI Listing |
Adv Sci (Weinh)
September 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
Carbonized wood has great potential as a self-supported electrode for energy storage/conversion applications. However, developing efficient and economical bifunctional electrodes by customizing the surface structure remains a challenge. This study proposes a novel multifunctional electrode design strategy, using N/P co-doped carbonized wood (NPCW) as carriers and in situ grows copper nanoparticles (Cu NPs) as nucleation centers to induce vertical growth of CuCo-layered double hydroxid (LDH) nanosheets along the substrate.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
Circulating tumor cells (CTCs) carry intact tumor molecular information, making them invaluable for personalized cancer monitoring. However, conventional capture methods, relying on passive diffusion, suffer from low efficiency due to insufficient collision frequency, severely limiting clinical utility. Herein, a magnetic micromotor-functionalized DNA-array hunter (MMDA hunter) is developed by integrating enzyme-propelled micromotors, magnetic nanoparticles, and nucleic acid aptamers into distinct functional partitions of a DNA tile self-assembly structure.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Major in Bionano Engineering, School of Bio-Pharmaceutical Convergence, Hanyang University, Ansan, 155-88, Republic of Korea.
Membrane proteins are essential bio-macromolecules involved in numerous critical biological processes and serve as therapeutic targets for a wide range of modern pharmaceuticals. Small amphipathic molecules, called detergents or surfactants, are widely used for the isolation and structural characterization of these proteins. A key requirement for such studies is their ability to maintain membrane protein stability in aqueous solution, a task where conventional detergents often fall short.
View Article and Find Full Text PDFInorg Chem
September 2025
Department of Chemistry and Chemical Engineering, Heze University, Heze, Shandong 274015, China.
Transition metal (TM)-doped silicon clusters represent critical model systems for understanding nanoscale hybridization and stability mechanisms. This study provides a comprehensive analysis of structural evolution, electronic properties, and thermodynamic stability in ruthenium-doped silicon clusters (RuSi̅, = 7-11) through integrated experimental and computational approaches. Anion photoelectron spectroscopy combined with density functional theory (DFT/B3LYP), coupled-cluster theory [CCSD(T)], and bonding analyses (AdNDP, NICS, ACID) reveals charge-state-dependent structural transitions, with full Ru encapsulation emerging at = 10 for anions and = 11 for neutrals.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong518055, China.
The rapid development of liquid exfoliation technology has boosted fundamental research and applications of ultrathin two-dimensional (2D) materials. However, the small-sized exfoliated 2D materials with a high specific surface area may exhibit poor chemical stability. Understanding the stability of 2D crystals will be significant for their preservation and service and for the development of new stable phases via the spontaneous transition from unstable structures.
View Article and Find Full Text PDF