98%
921
2 minutes
20
Brain signals refer to electrical signals or metabolic changes that occur as a consequence of brain cell activity. Among the various non-invasive measurement methods, electroencephalogram (EEG) stands out as a widely employed technique, providing valuable insights into brain patterns. The deviations observed in EEG reading serve as indicators of abnormal brain activity, which is associated with neurological diseases. Brain‒computer interface (BCI) systems enable the direct extraction and transmission of information from the human brain, facilitating interaction with external devices. Notably, the emergence of artificial intelligence (AI) has had a profound impact on the enhancement of precision and accuracy in BCI technology, thereby broadening the scope of research in this field. AI techniques, encompassing machine learning (ML) and deep learning (DL) models, have demonstrated remarkable success in classifying and predicting various brain diseases. This comprehensive review investigates the application of AI in EEG-based brain disease diagnosis, highlighting advancements in AI algorithms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494159 | PMC |
http://dx.doi.org/10.1631/jzus.B2400103 | DOI Listing |
EBioMedicine
September 2025
Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China. Electronic address:
J Particip Med
September 2025
Participatory Health, 20 Grasmere Ave, Fairfield, CT, 06824, United States, 1 (212) 280-1600.
JMIR Res Protoc
September 2025
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
[This corrects the article DOI: .].
View Article and Find Full Text PDFJMIR Cancer
September 2025
iCARE Secure Data Environment & Digital Collaboration Space, NIHR Imperial Biomedical Research Centre, London, United Kingdom.
Background: Electronic health records (EHRs) are a cornerstone of modern health care delivery, but their current configuration often fragments information across systems, impeding timely and effective clinical decision-making. In gynecological oncology, where care involves complex, multidisciplinary coordination, these limitations can significantly impact the quality and efficiency of patient management. Few studies have examined how EHR systems support clinical decision-making from the perspective of end users.
View Article and Find Full Text PDFJ Med Internet Res
September 2025
School of Advertising, Marketing and Public Relations, Faculty of Business and Law, Queensland University of Technology, Brisbane, Australia.
Background: Labor shortages in health care pose significant challenges to sustaining high-quality care for people with intellectual disabilities. Social robots show promise in supporting both people with intellectual disabilities and their health care professionals; yet, few are fully developed and embedded in productive care environments. Implementation of such technologies is inherently complex, requiring careful examination of facilitators and barriers influencing sustained use.
View Article and Find Full Text PDF