Bio-Inspired Self-Healing Silicon Anodes: Harnessing Tea Polyphenols to Enhance Lithium-Ion Battery Performance.

ACS Appl Mater Interfaces

Guangxi Key Laboratory of Superhard Material, National Engineering Research Center for Special Mineral Material, Guangxi Technology Innovation Center for Special Mineral Material, China Nonferrous Metal (Guilin) Geology And Mining Co., Ltd., Guilin 541004, PR China.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study introduces an anode material for lithium-ion batteries, achieved by integrating tea polyphenols (TP) with the widely utilized polyacrylic acid (PAA) binder. The composite material capitalizes on the intrinsic self-healing properties of TP, enhancing the anode's durability and adhesiveness without the need for additional organic synthesis. The incorporation of TP has been demonstrated to significantly elevate ionic conductivity and expedite lithium ion diffusion, thereby reducing interfacial resistance and decelerating the rate of capacity fade due to electrolyte decomposition and silicon particle expansion. Employing a comprehensive analytical toolkit, including Fourier transform infrared spectroscopy, thermogravimetric analysis, peel strength measurements, and density functional theory calculations, we elucidated the physicochemical properties of the Si@PAA-TP anode. The anode's electrochemical performance was systematically assessed through galvanostatic charge-discharge, cyclic voltammetry, and electrochemical impedance spectroscopy, with scanning electron microscopy providing insights into postcycling mechanical property alterations. This research advances a cost-effective, high-performance adhesive strategy for silicon anodes and contributes to the development.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c12880DOI Listing

Publication Analysis

Top Keywords

silicon anodes
8
tea polyphenols
8
bio-inspired self-healing
4
self-healing silicon
4
anodes harnessing
4
harnessing tea
4
polyphenols enhance
4
enhance lithium-ion
4
lithium-ion battery
4
battery performance
4

Similar Publications

In this study, we analyze InO thin-film transistors (InO-TFT) using synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES) in conditions. A bottom-gate InO-TFT with a high- AlO gate dielectric, grown on thermally oxidized silicon (SiO/p-Si), was examined while operating at varying and . The results reveal that the In 3d core level binding energy varies along the horizontal channel length, driven by the potential gradient induced by .

View Article and Find Full Text PDF

Amorphous silicon resistors enable smaller pixels in photovoltaic retinal prosthesis.

J Neural Eng

September 2025

Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, California, 94305, UNITED STATES.

Clinical trials of the photovoltaic subretinal prosthesis PRIMA demonstrated feasibility of prosthetic central vision with resolution matching its 100 μm pixel width. To improve prosthetic acuity further, pixel size should be decreased. However, there are multiple challenges, one of which is related to accommodating a compact shunt resistor within each pixel that discharges the electrodes between stimulation pulses and helps increase the contrast of the electric field pattern.

View Article and Find Full Text PDF

Electrochemiluminescence (ECL) imaging through closed bipolar nanoelectrode arrays (BPnEAs) has emerged as a promising method for in situ label-free wide-field electrochemical imaging. In this study, a cathodic ECL system based on [Ru(bpz)]/SO is combined with the BPnEAs fabricated on silicon nitride membrane windows through focused ion beam nanofabrication, enabling effective bipolar imaging of heterogeneous anodic electrocatalytic reactions. The shape, distribution, size, and material composition of individual electrodes within the array can be precisely controlled.

View Article and Find Full Text PDF

Multifunctional Dual Carbon Framework for Self-Healing Silicon Anodes.

ACS Appl Mater Interfaces

September 2025

Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.

Developing next-generation anodes with high silicon (Si) contents requires thoughtful embedment of Si particles in protective media, mainly carbonaceous materials. However, it has been challenging to simultaneously realize optimal electrical conduction, structural integrity, and low-cost synthesis for advancing Si-carbon materials. In this work, we addressed these challenges by synthesizing a composite, where commercial Si nanoparticles are embedded in a dual carbon framework via a facile solution mixing and annealing process.

View Article and Find Full Text PDF

Thick electrode is a critical strategy to increase the energy density of lithium-ion batteries(LiBs) by maximizing the active material loading. However, their practical application is obstructed by kinetic limitations, including low charge transfer efficiency and poor mechanical stability, which severely decrease rate capability, cycling performance, and safety. This review focuses on an intensive analysis of the problems with thick electrodes in terms of ion transfer kinetics, electron transfer discontinuities, and poor mechanical stability.

View Article and Find Full Text PDF