A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Recent Methods for Evaluating Crop Water Stress Using AI Techniques: A Review. | LitMetric

Recent Methods for Evaluating Crop Water Stress Using AI Techniques: A Review.

Sensors (Basel)

Department of Biosystems Engineering, College of Agricultural and Life Sciences, Gyeongsang National University, 501, Jinju-daero, Jinju-si 52828, Gyeongsangnam-do, Republic of Korea.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study systematically reviews the integration of artificial intelligence (AI) and remote sensing technologies to address the issue of crop water stress caused by rising global temperatures and climate change; in particular, it evaluates the effectiveness of various non-destructive remote sensing platforms (RGB, thermal imaging, and hyperspectral imaging) and AI techniques (machine learning, deep learning, ensemble methods, GAN, and XAI) in monitoring and predicting crop water stress. The analysis focuses on variability in precipitation due to climate change and explores how these technologies can be strategically combined under data-limited conditions to enhance agricultural productivity. Furthermore, this study is expected to contribute to improving sustainable agricultural practices and mitigating the negative impacts of climate change on crop yield and quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478660PMC
http://dx.doi.org/10.3390/s24196313DOI Listing

Publication Analysis

Top Keywords

crop water
12
water stress
12
climate change
12
remote sensing
8
methods evaluating
4
crop
4
evaluating crop
4
stress techniques
4
techniques review
4
review study
4

Similar Publications